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ABSTRACT

In this thesis, we investigate the feasibility of applying Sliding Mode Control (SMC),

one of the best known robust control techniques, to two applications - Targeted drug

delivery inside the human body using a ferromagnetic micro-robot steered by a MRI, and

Modeling and Control of a 4 Degree of Freedom (DOF) Barrett Whole Arm Manipulator

(WAM). It is extremely difficult to obtain exact mathematical models of each of the

systems under study, leading to unavoidable modeling errors. The problem statement

for both the applications can be formulated as trajectory tracking problems of nonlinear

dynamical systems with uncertainties. This motivates the use of SMC.

First, we develop an Adaptive Fuzzy Sliding Mode Control (AFSMC) scheme for the

MRI based drug delivery system, based on a highly nonlinear model available in literature.

Simulation results illustrate that the proposed technique is able to reject disturbances, and

achieve perfect tracking of the micro-robot along the centre line of a blood vessel. The

‘chattering’ phenomenon observed in conventional SMC is completely eliminated. Another

significant merit of this framework, is its ability to estimate the dielectric density of blood

on-line. Comparisons are drawn with a state-of-the-art backstepping approach.

Next, we develop a rigid body model of a 4 DOF Barrett WAM using the recur-

sive Newton-Euler technique. This is a major contribution as Barrett does not disclose

its dynamic model. The precision achieved in rigorous trajectory tracking experiments

performed in the joint space, validates the accuracy of the developed model. A variant

of SMC, known as Nonsingular Fast Terminal SMC (NFTSMC), which guarantees fast

finite-time convergence of the error trajectories to zero, has also been proposed for control

of the WAM. We derive an analytical expression for the error settling time and demon-

strate that the NFTSMC indeed guarantees faster performance as compared to a standard

Nonsingular Terminal SMC (NTSMC). A detailed comparative study of simulation and

experimental results is presented.

Finally, aiming to integrate the robustness of SMC with optimal control theory, we

integrate conventional SMC with Adaptive Dynamic Programming, to obtain a novel op-

timal sliding mode control framework. We present the general design procedure, stability

analysis, and simulation results for both regulation and tracking problems, the latter being

performed on a simplified model of the MRI guided micro-robot system.

v



IIT Kanpur

vi



Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Literature in Sliding Mode Control . . . . . . . . . . . . . . . . . . . 2

1.1.2 Literature in MRI-guided nano-robotic systems for therapeutic and

diagnostic applications . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Literature in Modeling and Control of robotic manipulators . . . . . 12

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Nonlinear model of the ferromagnetic micro-robot in the human vascu-

lature 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Hydrodynamic Drag Force . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Apparent Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Contact Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Van der Waals and Electrostatic Forces . . . . . . . . . . . . . . . . 20

2.2.5 Magnetic Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Development of a Fuzzy Sliding Mode Controller with Adaptive Tuning

Technique for a MRI-guided robot 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 State Space Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



IIT Kanpur

3.3 Adaptive Fuzzy Sliding Mode Control Scheme . . . . . . . . . . . . . . . . . 25

3.3.1 Conventional Adaptive Sliding Mode Control Technique . . . . . . . 26

3.3.2 Fuzzy hitting control law . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Adaptive Fuzzy Parameter Tuning Algorithm . . . . . . . . . . . . 30

3.4 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Dynamic Modeling of the Barrett Whole Arm Manipulator (WAM) and

Experimental Validation 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Newton-Euler Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 System Description and Modeling . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 State Space Representation . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.2 Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Development of a Nonsingular Fast Terminal Sliding Mode Controller

for Computed Torque Control 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Conventional TSMC and Fast TSMC . . . . . . . . . . . . . . . . . 63

5.2.2 Nonsingular TSMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Nonsingular Fast TSMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Analysis of Time of Convergence . . . . . . . . . . . . . . . . . . . . 65

5.4 Control Synthesis and Stability Analysis . . . . . . . . . . . . . . . . . . . . 67

5.4.1 A Simulation study for a 2nd-order system . . . . . . . . . . . . . . 70

5.5 Nonsingular Fast Terminal Sliding Mode Controller for the 4 DOF WAM . 71

5.6 Simulation and Experimental results . . . . . . . . . . . . . . . . . . . . . . 73

5.6.1 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Continuous-Time Single Network Adaptive Critic Based Optimal Sliding

Mode Control for Nonlinear systems 79

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

viii



IIT Kanpur

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.2 Sliding Mode Control Design . . . . . . . . . . . . . . . . . . . . . . 82

6.3.3 Continuous Time Single Network Adaptive Critic based Optimal

Sliding Mode Control Design . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.6 Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7 Extension to Trajectory Tracking Applications : A Case Study . . . . . . . 96

6.7.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.7.2 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7.4 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusions and Future Work 103

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.1 Future Work on the MRI-Drug Delivery System . . . . . . . . . . . 104

7.1.2 Future Work on Control of the WAM robot . . . . . . . . . . . . . . 105

Bibliography 107

ix



IIT Kanpur

x



List of Tables

1.1 Blood vessels and their diameters . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Comparison of the two control techniques . . . . . . . . . . . . . . . . . . . 34

3.3 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 D-H Parameters for the 4-DOF Barrett WAM Manipulator . . . . . . . . . 46

4.2 Link Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Comparison of the two control techniques . . . . . . . . . . . . . . . . . . . 55

4.4 Details of the First Experiment for ω = 0.8rad/s. Row 1 shows the trajec-

tory responses for each of the four joints for SMC. Row 2 shows the Control

efforts for SMC. Row 3 shows the trajectory responses for each of the four

joints for Backstepping. Row 4 shows the Control efforts for Backstepping . 56

5.1 Comparison of convergence times of NTSM and NFTSM . . . . . . . . . . . 68

5.2 Comparison of time of convergence of NTSM with NFTSM. The dashed line

represents the response of the NTSM model and the bold line represents

the response of the NFTSM model. . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Details of the Simulation Study on the 2nd-order model . . . . . . . . . . . 71

5.4 Comparison of Simulation and Experimental Data . . . . . . . . . . . . . . 74

5.5 Details of Simulation and Experimentation on Individual Joint Trajectory

Tracking at ω = 1 rad/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Details of Experimentation on Combined Joint Trajectory Tracking at ω =

1 rad/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 J1 for the three controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 J2 for the three controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 J1 and J2 for the two controls . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xi



IIT Kanpur

6.4 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Details of the Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . 101

xii



List of Figures

1.1 The phase plane portrait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The control input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Experimental setup used by Martel et al. [47] . . . . . . . . . . . . . . . . . 10

1.4 Architecture of MRI-Drug Delivery system [71] . . . . . . . . . . . . . . . . 12

1.5 The Barrett WAM robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Schematic of a blood vessel with minor bifurcations [9] . . . . . . . . . . . . 19

3.1 Block Schematic of the Adaptive Fuzzy Sliding Mode Control Scheme . . . 26

3.2 (a) Input membership function (b) Output membership function . . . . . . 28

3.3 Reference and Actual trajectories of the micro-robot in the case of AFSMC

with disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Reference and Actual trajectories of the microrobot in the case of Back-

stepping Control with disturbance . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Position error trajectories of the microrobot in the case of AFSMC with

disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Velocity error trajectories of the microrobot in the case of AFSMC with

disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Estimation of blood’s dielectric density ǫ . . . . . . . . . . . . . . . . . . . . 39

3.8 Time evolution of the Sliding Surfaces . . . . . . . . . . . . . . . . . . . . . 39

3.9 Control input in the case of SMC with disturbance . . . . . . . . . . . . . . 40

3.10 Control input in the case of AFSMC with disturbance . . . . . . . . . . . . 40

4.1 Forces and Torques acting on a random link [64] . . . . . . . . . . . . . . . 45

4.2 WAM 7-DOF dimensions and D-H frames . . . . . . . . . . . . . . . . . . . 46

4.3 Vectors associated with link i . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Details of Experiment 2: Combined motion of 4 Joints using SMC . . . . . 57

4.5 Details of Experiment 2: Combined motion of 4 Joints using Backstepping . 57

xiii



IIT Kanpur

4.6 Mean control effort comparison for experiment 2 . . . . . . . . . . . . . . . 58

4.7 RMSE comparison for experiment 2 . . . . . . . . . . . . . . . . . . . . . . 58

5.1 The 4 DOF Barrett WAM robot . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Evolution of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Control inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Position and Velocity Trajectories . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Control inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 A blood vessel with bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . 99

xiv



Chapter 1

Introduction

1.0.1 Motivation

Often, it is difficult to derive an exact mathematical model for a real physical system.

This is mainly because some of the parameters of the system might be unknown, or part

of the system dynamics is difficult to model, leading to simplifying approximations, or

the system might be subject to disturbances which are difficult to estimate. Since its

inception in the 1950’s, Sliding Mode Control (SMC) has been widely used by researchers

in a variety of applications, owing to its robustness against a large class of perturbations or

model uncertainties. It is a discontinuous feedback control strategy which often requires

a reduced amount of information in comparison to classical control techniques and also

holds the potential of stabilizing some nonlinear systems (such as mechanical systems with

friction) which are otherwise not stabilizable by continuous state feedback laws [61].

In this thesis, motivated by these attractive features of SMC, we investigate the fea-

sibility of applying SMC to two major applications - Automated drug delivery inside the

human body using a MRI-guided micro-robot and Computed Torque Control of a 4 De-

gree of Freedom Barrett Whole Arm Manipulator. Finally, we attempt to develop an

Optimal Sliding Mode Control scheme by drawing from the concept of Approximate Dy-

namic Programming, the underlying motivation being the integration of the robustness

feature of conventional SMC with optimal control theory. Although the final goals of

each of the two aforementioned applications are completely different, the dynamic models

which represent the concerned systems have similar state space representations. Both the

systems under study are extremely difficult to model exactly, leading to modeling errors

and system uncertainties. In the first application, the micro-robot is expected to follow a

specified path inside a human blood vessel. In the second application, each of the 4 joints

1
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of the Barrett WAM are expected to track desired commands so as to execute a particular

motion. Thus, the problem statements of each of these applications can be formulated as

trajectory tracking control problems of nonlinear dynamical systems with uncertainties.

Keeping these similarities in mind, the robust control techniques developed in this thesis

will be applicable to each of the two systems under consideration. Specifically, the main

contributions of this thesis are:

1. Development of an Adaptive Fuzzy Sliding Mode Control (AFSMC) scheme for steer-

ing a ferromagnetic micro-robot inside the human blood vessel using the magnetic

field generated by an MRI. The developed scheme achieves perfect tracking, rejects

disturbances, removes the chattering phenomenon observed in conventional SMC,

and is able to estimate a key uncertain parameter of the model on-line.

2. Combining the Continuous Time Single Network Adaptive Critic architecture with

SMC, to obtain a novel optimal sliding mode control framework. This framework

can be used for both regulation and tracking problems, for a wide class of nonlinear

systems with uncertainties.

3. Developing a rigid body dynamic model for 4 Degree of Freedom operation of the

Barrett Whole Arm Manipulator (WAM). This is a major contribution as Barrett

does not disclose the model of the WAM. However, for applying any model-based

controller, knowledge of the model is necessary. The derived model is validated using

rigorous experimentation. This is followed up by computed torque control using a

variant of the conventional SMC known as Nonsingular Fast Terminal Sliding Mode

Control (NFTSMC). This variant, which uses a nonlinear sliding surface, ensures fast

finite-time convergence of the error trajectories to zero. The conventional SMC on

the other hand is based on a linear sliding surface, and only guarantees asymptotic

stability i.e. theoretically, the error states take infinite time to settle to zero.

1.1 Literature Survey

1.1.1 Literature in Sliding Mode Control

Over the past few decades, the concept of Sliding Mode Control has attracted a lot of

attention. The concept of SMC is based on Variable Structure Systems (VSS), in which

the control input switches between two control signals. The discontinuous nature of the

SMC technique is its most intriguing property. This peculiar system characteristic leads

2
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to extremely robust control systems ; often systems which are completely insensitive to

parametric uncertainties in the model and external disturbances [36], [83].

In general, the dynamics of a Variable Structure Control (VSC) system consists of

two modes - a ‘reaching mode’ or nonsliding mode, followed by a ‘sliding mode’ [27]. In

the reaching mode, the state trajectories are driven by an appropriately designed variable

structure controller, from anywhere in the phase plane, towards a sub-manifold of the

state space, known as the switching manifold or sliding manifold. This is achieved in

finite time. This is followed by the sliding mode, which is characterized by asymptotic

convergence of the state trajectories to the equilibrium state of the system. Once the

system states reach the sliding manifold, the system dynamics remain invariant to a class of

parameter uncertainties and disturbances (specifically known as ‘matched disturbances’).

This so called ‘invariance’ property of sliding mode control is its main advantage. Once the

matching conditions are met, the invariance property holds true for systems represented

by both linear and nonlinear high-order differential equations [36].

The basic ideas of sliding mode control can be illustrated by considering a simple

example. Let us take the example of a simple second-order nonlinear system represented

by the following differential equations

ẋ1 = x2

ẋ2 = −x31 + u (1.1.1)

Let the control problem be the regulation of the state x1 to the origin. Let the output be

y = x1; thus, the output error is e = x1. The switching function for this system is defined

as

s = ė+ ce, (1.1.2)

where c is a positive constant. Assuming the existence of the sliding mode, once the state

trajectory is brought to the sliding manifold s = 0, the system dynamics is represented by

the following first-order differential equation

ė+ ce = 0 (1.1.3)

The solution of the above differential equation gives e(t) = e(t0)exp[−c(t − t0)]. This

shows that for c > 0, the system’s output error e(t) exponentially converges to zero. The

condition for existence of the sliding mode is defined as

sṡ ≤ 0 (1.1.4)
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The condition for existence of the sliding mode ( 1.1.4), leads to the design of a discontin-

uous control u, which switches between two control values, and drives the system states

to the sliding manifold. For the system ( 1.1.1), the sliding condition is satisfied by the

following choice of control law

u = x31 − cx2 −Msgn(s), (1.1.5)

whereM , a positive constant, is the sliding mode gain which is chosen by the designer, and

sgn(·) is the signum function. Known bounds on the system uncertainties and disturbances

facilitate the choice ofM . Later on in the thesis, we will investigate in detail, the procedure

to choose M based on Lyapunov stability theory. With a properly chosen M value, the

existence of the sliding mode can be achieved even in the presence of modeling errors

and disturbances. Figure 1.1 depicts the phase plane portrait and Figure 1.2 depicts the

control effort for the system ( 1.1.1). The main ideas are summarized as follows

• The dynamics of the original system ( 1.1.1) was of second-order. However, once

the sliding mode was reached, the dynamics was reduced to that of a first-order

differential equation ( 1.1.3). In general, the sliding mode dynamics is of a lower

order as compared to the dynamics of the original model.

• During the sliding mode, the system dynamics is solely governed by the structure of

the sliding manifold s = 0, which is independent of modeling errors and disturbances.

Thus robustness is guaranteed once the system trajectory is brought to the sliding

surface.

• The thick band which one observes in the control input u in Figure 1.2, is represen-

tative of a phenomenon known as ‘chattering’, one of the major sources of criticism

against the practical implementation of SMC. This phenomenon is generally thought

of as a motion which oscillates about the sliding manifold. As a consequence, the

control input switches at very high frequency due to the signum function typically

present in a sliding mode control law. Infact, the width of the high frequency band

is precisely equal to 2M , where M is the gain associated with the signum function.

This can be seen in Figure 1.2, where the band has a thickness of 10, and M = 5.

Thus, although high gains are necessary to reject disturbances, they also lead to

the problem of chattering, which in turn leads to wear and tear of actuators. A

lot of research has gone into the chattering-mitigation problem. The most com-

monly cited technique to suppress the chattering phenomenon is the Boundary layer

4
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technique [16], [84]. In this approach, the switching function is approximated by

a piecewise linear or smooth function. In order for the system to retain the ideal

sliding mode behaviour, particularly when an unknown disturbance is to be rejected,

sufficiently high gains are required. However, this method too has received criticism

from many researchers, the main point of contest being that the system loses the

inherent robustness associated with the sliding mode. Thus, although this approxi-

mation works favourably in many implementations, it has its own shortcomings. We

will discuss another technique of chattering suppression in detail in Chapter 3.

Over the years, sliding mode control has been applied to a variety of systems, including

linear systems [83], nonlinear systems [35], multi-input/multi-output systems [51], discrete-

time systems [26], large-scale and infinite-dimensional systems [58], systems with input

and/or state delays [44], and stochastic systems [25]. Although SMC was originally mostly

used for the purpose of stabilization, its objectives have greatly extended. SMC based

approaches have also been used to construct state observers [70] and distance estimators

[31] .

The control algorithms developed by control engineers are implemented mostly on

digital computers. This has motivated the study of Discrete Sliding Mode Control (DSMC)

in the past two decades [50]. In the case of DSMC design, the control input is applied

to the plant at certain sampling instants and the control effort is assumed to be constant

throughout a sampling period. DSMC is one of the most active areas of research for the

sliding mode community, owing to its practical relevance. In this thesis, we will confine

ourselves to the use of the conventional continuous time SMC.

1.1.2 Literature in MRI-guided nano-robotic systems for therapeutic

and diagnostic applications

Targeted Drug Delivery and Nano-robotics

Targeted drug delivery, also known as smart drug delivery, is the method of delivering

medication to a patient in a way such that the concentration of the medication increases

in certain parts of the body relative to others [52]. The main objective of a targeted drug

delivery system is to prolong, localize, target and ensure a protected drug interaction with

the diseased tissue. Conventional drug delivery systems such as oral ingestion or intra-

vascular ingestion rely on systemic blood circulation for distributing the drug throughout

the body. For most therapeutic agents, this often results in only a small fraction of the

6



CHAPTER 1. INTRODUCTION 7

drug reaching the targeted organ. This is a major reason why targeted drug delivery is

preferred over the traditional drug delivery systems. Other advantages of targeted drug

delivery over traditional methods include reduction in the frequency of the dosages taken

by the patient, having a more uniform effect of the drug, reduction of drug side-effects,

and reduced fluctuation in circulating drug levels.

Nano-robots are defined as machines composed of nano-scale components, which can be

controlled at the nano-meter scale, and which respond to input forces and information [69].

These particles are conceptualised to have sizes comparable to that of human cells. Thus,

if these nano-robots acquire simple functionalities to sense and target specific cells, and to

release drug molecules when triggered by a control signal, then it can lead to a paradigm

shift in medical research. Conducting curative and reconstructive treatment in the human

body at the cellular and sub-cellular level, in a controllable manner, would then be a

realizable concept [71]. Such a ground-breaking development would usher in a new era

in medical diagnosis and lead to better treatment of cardiovascular diseases, diabetes and

most importantly, cancerous tumours.

Over the last two decades, a variety of nano-particles and nano-vesicle technologies

have been employed for diagnostic and therapeutic purposes [13, 19, 39, 57]. Although

these novel methodologies possess excellent physiochemical properties, possess prolonged

circulation times and improved absorption rates, they are distributed through systemic

circulation, and hence suffer from poor targeting capabilities [68]. Enhancement of target-

ing capabilities with the aim of minimizing side-effects and improving diagnostic efficiency,

necessitates the use of guidance techniques.

Control Strategies

Autonomous untethered micro-robots are a possible solution to the guidance problem.

However, it is extremely difficult to embed actuators which are powerful enough to propel

such robots in the human cardiovascular system, especially when the robot is swimming

against the blood flow. Magnetic micro/nano-particles, equipped with sensing and actua-

tion mechanisms, have been studied by several groups. The developed techniques mostly

involved the use of static magnetic fields generated by magnets [28,29] or superconducting

magnets [15, 53] to attract the micro-particles towards the targeted region. However, all

these techniques were open loop, with no tracking and no feedback mechanism. Conse-

quently, these open loop methods had poor localization accuracy and proved to be efficient

only in regions near the body surface.
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This motivated the development of a precise closed-loop nano-particle localization

system. In the most recent literature, spanning the development which has occurred in

this field over the last decade, two methods have been advocated to achieve targeted drug

delivery using magnetic micro/nano-particles - the use of external Maxwell coils [4, 5, 81]

and the use of a MRI device. The MRI-based localization scheme was developed by Sylvain

Martel at the Ecole Polytechnique de Montreal, Canada [14, 20, 66]. This approach has

three main advantages

• It is non-invasive.

• It allows for simultaneous actuation/propulsion and tracking. Thus, a closed loop

real time control scheme can be implemented.

• Commercial MRI devices are available in most hospitals.

The first systematic approach towards MRI-based guidance of functionalized nano-

robot capsules began as part of the European Project NANOMA in the summer of 2008.

This innovative idea is based on the concept of using the magnetic field generated by

the MRI to propel the nano-particles to the target, using feedback of the position of

the nano-particles, by processing the MRI image data. This navigation methodology, in

combination with appropriate chemical modification of the surfaces of the nano-particles,

is expected to yield a more localized and controlled treatment.

Remark - The control objective is to determine the direction and magnitude of the

magnetic field gradients to be generated by the MRI, based on position feedback obtained

from MRI-imaging.

In our work, we make use of the model proposed in [6], which takes into account wall

effects, wall interactions and the Non-Newtonian behaviour of blood. This results in a

highly non-linear model. The vast majority of related literature deals with synthesizing

control laws using linear tools. For instance, the PID controller proposed in [66], suffered

from instabilities and sensitivity to noise or to unmodeled dynamics. The backstepping

approach used in [9], is the state-of-the-art control technique which has been used for this

model. We will compare our results with this technique.

Comments on the size and nature of the particles

To get a more realistic feel of the particles under consideration, we present a report on the

composition and sizes of the particles, which have been used in simulation and experiments

so far in literature.

8
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The list is as follows

• In 2006 [47], Martel et al. performed experiments on ferromagnetic spheres made

up of 1010/1020 carbon steel with a diameter of 3.14 mm. The saturation

magnetization of this alloy is Msat = 1.376×106 A/m with a saturating magnetizing

induction of Bsat = 0.734 T. The experiment involved magnetic levitation of these

spheres in a rigid cylindrical tube made up of polymethylmethacylate (PMMA)

against a flow of water. The sphere was placed vertically inside the bore of a 1.5 T

Siemens Magnetom Vision MRI scanner capable of producing maximum gradients

of 25 mT/m. The spheres were saturated when placed inside the MRI scanner (As

B0 = 1.5 T > Bsat = 0.734 T). Figure 1.3 shows the setup used by Martel et al. for

conducting their experiments.

• In 2007 [48], Martel et al. performed both, in vitro and in vivo experiments using

a ferromagnetic sphere made up of chrome steel, having a diameter of

1.5 mm (0.0136 grams). The material has a saturation magnetization of Msat =

1.35×106 A/m, and the MRI used was a 1.5 T MRI with a maximum magnetic field

gradient of 40 mT/m. The in vitro experiment involved propulsion on a Plexiglass

plate, and the in vivo experiment involved propulsion inside the carotid artery (inner

diameter of 5 mm) of a living swine.

• In 2008 [66], Martel et al. used a simple PID controller for rectilinear navigation of

a ferromagnetic sphere of 1.5 mm diameter in a 2-D path within a pulsatile flow.

The material used was chrome steel and the actuator was a 1.5 T MRI.

• Since 2010, Ferreira et al. have performed simulation studies on ferromagnetic

spheres of diameter 0.25 mm [9, 10]. The reduction in size of the particles was

possible owing to use of 3 T MRI’s, having maximum magnetic field gradients of

80mT/m. Backstepping control has been used to construct the feedback law in

these endeavors.

Having formed an idea about the sizes of the particles which have been reported in liter-

ature, it is important to have a clear idea of the sizes of blood vessels they are expected

to navigate within. Table 1.1 lists different types of blood vessels and their respective

diameters [9].
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Figure 1.3: Experimental setup used by Martel et al. [47]

Table 1.1: Blood vessels and their diameters

Vessel Diameter (mm)

Artery 10

Small Artery 1

Arteriole 0.1

Capillary 0.01

10
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Remark - From the preceding discussion, it is apparent that with the current technol-

ogy available in terms of maximum magnetic field gradients which can generated by MRI’s,

navigation is possible in vessels no smaller than small arteries. In our study, we assume

the availability of a 3 T MRI which can generate a maximum of 80 mT/m magnetic gra-

dient. The particles under consideration will have diameters varying within 0.25-0.3 mm

(ferromagnetic spheres).

Overview of MRI-Drug Delivery System

Figure 1.4 shows the architecture of a MRI based Drug Delivery System . One can

appreciate the fact that the complexity involved in implementing such a system in real

time, necessitates expertise in several engineering domains. Some of the main issues in

real time implementation are summarized below

• As discussed earlier, constraints on the maximum magnetic gradients that can be

generated by commercial MRI’s, puts a limit on the size of ferromagnetic particles

which can be used for navigation. At lower scales, it is necessary to use additional

coils to supply higher gradients.

• Spatial resolutions of current medical imaging techniques is also a limitation [67,89].

The image processing module needs to be designed in a way such that communication

latencies and delays are avoided. In [46], the authors have implemented a tracking

routine in real time within 20 ms.

• Imaging and propulsion cannot be done simultaneously. Hence, it is necessary to

have a time-division-multiplexing scheme.

• Typically, the cooling system for the gradient coils of a MRI are designed for imaging

purpose only. Propulsion requires the MRI coils to work at maximum amplitudes

and higher duty cycles. The excess heat generated due to propulsion cannot be

evacuated by the available cooling system. Thus, during experiments, lower gradient

amplitudes need to be applied in order to increase the duty cycles of operation, and

check the temperatures of the MRI coils from rising beyond prescribed values.

In our work, we specifically concentrate on the development of the High Level Controller

module, as shown in Figure 1.4. With the assumption that a perfect position feedback

is obtained, this module generates the values of the MRI gradients required to keep the

ferromagnetic particle on a specified path. These values are passed on to the Low Level
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Figure 1.4: Architecture of MRI-Drug Delivery system [71]

Controller. This controller then generates appropriate electrical signals which generate

the required gradients.

1.1.3 Literature in Modeling and Control of robotic manipulators

The trajectory tracking control problem for robotic manipulators involves the determina-

tion of joint inputs required to make the end-effector execute a commanded motion, which

may be specified as a sequence of end-effector positions and orientations or as a continuous

path. To achieve this control objective, an accurate model f : q, q̇, q̈ → u is necessary.

Here, q, q̇, q̈ represent the joint position, velocity and acceleration vectors respectively, u

represents the control input (which are the joint torque values) and the function f(·) is

12
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Figure 1.5: The Barrett WAM robot

termed as the Inverse Dynamics Model (IDM) .

Thus, determining the IDM forms the first step towards solving the trajectory track-

ing problem. The Newton-Euler recursive technique and the Euler-Lagrange technique are

the conventional ways of deriving the robot model analytically, based on rigid body dy-

namics [18], [23]. However, unknown nonlinearities present in real physical systems, which

cannot be modeled by rigid body dynamics, often lead to poor tracking performance. This

has led to a lot of research over the past decade on statistical machine learning techniques

which try to learn the model of the system by treating it as a nonparametric nonlinear

regression problem which does not use the rigid body dynamic model of the system [56,73].

The large volume of training data required for such techniques results in high computa-

tional complexity. Thus, the dynamic model is learned offline for pre-sampled trajectories.

However, this results in some disadvantages. These methods might not prove to be very

accurate for cases when either the robot dynamics change or the robot navigates in an

unexplored part of the state space. Moreover, obtaining a suitable training data set for a

robot with several degrees of freedom is also a challenging task. To overcome these diffi-

culties, some recent research has been dedicated towards the development of fast online

learning techniques [55,72].

We adopt a more conventional route. A nominal model of the system is first devel-

oped using the Newton-Euler approach. Next, we use two popular nonlinear control tools

- Backstepping and SMC, to experimentally validate the model. The Backstepping ap-
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proach is a recursive control technique applicable to nonlinear dynamical systems which

can be expressed in the strict-feedback form and has been used extensively in literature

for tracking problems [41]. A more robust control technique which serves as an ideal

candidate for robotic systems is the Sliding Mode Control (SMC). As discussed earlier,

the main advantages of this powerful tool are its simplicity of design and invariance of

the system dynamics to matched disturbances once the system states reach the sliding

surface . These features have made SMC a very attractive tool for researchers focusing

on nonlinear mechanical systems [11, 65] . However, the vast majority of study on SMC

and Backstepping, as applied to robotic manipulators, is limited to simulations. As has

been mentioned earlier, the unknown nonlinearities existing in real robotic systems make

the step from simulation to experimental validation a very challenging one. The precision

achieved through our experiments validates the accuracy of the developed model.

This work forms a part of a research initiative where the main goal of ours is to build

autonomous learning manipulators which will collaborate with humans, aiding them in

their work. Motion modeling forms a part of our work where we model the arm motion of

a Barrett WAM robot through Kinesthetic teaching. Motion models which are represented

through dynamical systems, generate task specific suitable joint trajectories or end effector

trajectories. Hence, we require proper control modules that would enable us to track those

generated trajectories with precision. This work is an effort in that direction where we

are exploring model based controllers through actual implementation. In our work, we

assume that the motion modeling module generates joint trajectories which are fed to the

controller. The development of the motion modeling module is a topic of research in itself.

Figure 1.5 shows the Barrett WAM robot which we will be working with.

1.2 Thesis Organization

In Chapter 2, we provide the nonlinear model of the ferromagnetic micro-robot in the

human vasculature. This exists in literature and has been presented for the sake of com-

pleteness. In Chapter 3, we discuss the development of the Adaptive Fuzzy Sliding Mode

Control (AFSMC) scheme for the MRI based micro-robot navigation system. Design,

stability analysis and simulation studies are included. In Chapter 4, we take up the rigid

body modeling of the WAM robot. A detailed description of the modeling procedure is

presented. This is followed up by experimental validation of the model through track-

ing experiments. In Chapter 5, we develop a Nonsingular Fast Terminal Sliding Mode

Control (NFTSMC) scheme for control of the WAM. The basic theory is developed, an

14
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analysis of the convergence time is presented, and simulations are presented to illustrate

the main ideas. This is followed up by rigorous experimentation results on the Barrett

WAM. Comparisons are made between simulation and experimental results, to give a feel

of the differences existing between the two environments. In Chapter 6, we combine the

continuous time Single Network Adaptive Critic (SNAC) architecture with SMC in an

attempt to merge the robustness of SMC with optimal control theory. Theory, stability

analysis, general design steps, and simulations to illustrate the applicability of the pro-

posed technique are presented in this chapter. In Chapter 7, we conclude by giving a

summary of the work done in this thesis and by listing the directions of future research.
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Chapter 2

Nonlinear model of the

ferromagnetic micro-robot in the

human vasculature

2.1 Introduction

This chapter presents a detailed 2D nonlinear model of a micro-robot (which is a polymer

bound aggregate of ferromagnetic particles) immersed inside the human blood vessels. A

preliminary model for this system was established in [7], and was later further developed

in [6] . In this chapter, we re-produce the latter for completeness. The model forms an

essential part for control synthesis, which is dealt with in the next chapter.

2.2 The Model

The translational and rotational motions of the robot are expressed by [6]

m
d~v

dt
= ~Fm + ~Wa + ~Fd + ~Fc + ~Fvdw + ~Fe (2.2.1)

J
d~w

dt
= ~Tm + ~Td + ~Mc (2.2.2)

where ~v and ~w are the translational and rotational velocities of the robot and m and

J are its mass and moment of inertia respectively. ~Fm, ~Wa, ~Fd, ~Fc, ~Fvdw , and ~Fe denote

respectively the magnetic force produced by the MRI gradient coils, the apparent weight,

the blood hydrodynamic drag force, the robot-to-wall contact force, the Van der Waal’s

force and the electrostatic force. ~Tm, ~Td and ~Mc denote respectively the magnetic torque,

the hydrodynamic drag torque and the robot-to-wall contact moment. It is assumed that

17
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the orientation of the robot does not change due to the magnetic torque which aligns the

magnetization of the robot along the external field (B0 = 3T ) as ~Td and ~Mc are of much

smaller order than ~Tm. Figure 2.1 shows the parabolic profile of blood inside a blood

vessel and the forces acting on the micro-robot.

2.2.1 Hydrodynamic Drag Force

The robot’s motion is analysed using generic Navier-Stokes equations. Working under

the assumption that fluid flow is mainly laminar, a drag force model can be used to

approximate the hydrodynamic forces. The hydrodynamic drag force Fd, that the fluid

exerts on a spherical body is given by

Fd = −
1

2
ρf

( ||v − vf ||
β

)2

ACd

(v − vf )

||v − vf ||
(2.2.3)

Here, v − vf denotes the relative velocity of the micro-robot with respect to the fluid, A

represents the frontal area of the core, ρf is the density of the fluid, and β , a dimensionless

ratio related to the wall effect caused by the vessel’s occlusion by the robot, is given by [38].

β =
1− λα0

1 + ( λ
λ0
)
α0

(2.2.4)

Here, λ = 2r
D

and D denotes the vessel’s diameter (in meter). The parameters α0 and λ0

are functions of the Reynold’s number, but are commonly set to 1.5 and 0.29, respectively.

The drag coefficient Cd, a function of the Reynolds number Re =
2rρf |v−vf |

βη
, is given

by [76]

Cd =
24

Re
+

6

1 +
√
Re

+ 0.4 (2.2.5)

As blood is a non-newtonian fluid, its viscosity η is a function of the vessel’s diameter

d (in micron) and hematocrit rate hd, and it is related to these quantities according to

following empirical relation [62]

η =
ηplasmad

2

(d− 1.1)2

(

1 +
(η0.45 − 1)d2

(d− 1.1)2
(1− hd)c − 1

(1− 0.45)c − 1

)

(2.2.6)

Here, the parameter ηplasma denotes plasma’s viscosity. η0.45 represents the relative ap-

parent blood’s viscosity for a fixed discharge hematocrit rate of 0.45 and is given by

η0.45 = 6e−0.085d + 3.2− 2.44e−0.06d0.645 (2.2.7)

The shape of the viscosity dependence on hematocrit is given by

c =
1011

d12
− (0.8 + e−0.075d)

(

d12

d12 + 1011

)

(2.2.8)
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Figure 2.1: Schematic of a blood vessel with minor bifurcations [9]

The spatio-temporal variations in the velocity of blood are modeled using an affine com-

bination of a time-varying periodic flow with a spatial parabolic shape. It is given by

vf (t) = Vf (1 + af sin(wf t+ φf ))×



1−
(

D
2 − h− r

R

)2


 (2.2.9)

A periodic 10% deformation of the diameter of the blood vessel D(t), synchronized

with the blood velocity vf (t), is induced by pulsatile flow caused by cardiac pumping in

arteries. This effect is taken into consideration by using the following equation

D(t) = D(1 + 0.1 sin(wf t+ φf )) (2.2.10)

Although a parabolic blood velocity profile has been assumed in this study, the presence

of minor and major bifurcations (as one can see in Figure 2.1 ) can strongly affect the

parabolic profile. An interested reader is referred to [10] for more analysis on this topic.

Remark - The designed controller should be sufficiently robust to compensate the effect

of bifurcations which might be thought of as a disturbance to the nominal model.

2.2.2 Apparent Weight

The apparent weight (combined effect of buoyancy and weight) that acts on the micro-

robot is given by

Wa = V (ρ− ρf )g (2.2.11)
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Here, V is the total volume of the robot, ρ = τmρm + (1 − τm)ρpoly where ρm and ρpoly

are the magnetic material’s and polymer’s densities respectively, and τm = Vm

V
where Vm

is the ferromagnetic volume.

2.2.3 Contact Force

The contact force comes into play whenever there is an impact between the robot and the

wall. Owing to the low velocity of the robot, the duration of the impact is not more than

a few milliseconds. Thus, the contact force is expressed by a modified Hertzian contact

law as given in [17]. Under the assumption of no friction between the robot and the wall

during the impact period, the contact force is given by

Fc = kδ
3

2H(δ)n : loading (2.2.12)

Here, δ is the elastic deformation of the wall at the point of contact, H represents the

Heaviside function, n is the unit normal vector pointing from the robot to the contact

surface, and k is the stiffness given by

k =
4
√
3

3
1−σp

2

Ep
+ 1−σw

2

Ew

(2.2.13)

Here, Ep(Ew) is the Young’s modulus of the robot (wall) and σp(σw) is the Poisson’s ratio

of the robot (wall).

The contact force during unloading is different from the one during loading and is

given by

Fc = Fcm

(

δ − δ0
δm − δ0

)q

H(δ)n : unloading (2.2.14)

Here, Fcm and δm are the maximum contact force and corresponding maximum de-

formation of the wall during impact. δ0 is the permanent deformation of the wall from

loading/unloading cycles, and the exponent q varies between 1.5 and 2.5.

2.2.4 Van der Waals and Electrostatic Forces

The robot and the wall interact with each other through Van der Waals and Electrostatic

forces. The Van der Waals potential between the walls of the blood vessel and the spherical

micro-robot is given by [37]

Vvdw = −Ah

6

(

1

h̄
+

1

2 + h̄
+ ln

h̄

2 + h̄

)

n (2.2.15)

Here, Ah is the Hamaker constant and h̄ = h
r
is the normalized distance between the

robot and the wall, h represents the actual distance between the robot and the wall and
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r represents the radius of the spherical micro-robot. The Van der Waals interaction force

is obtained by differentiating equation ( 2.2.15) and is given by

Fvdw = −∇VvdwH(h) (2.2.16)

The electrostatic force between the robot and the wall (which is considered to be an

uncharged surface) is given by [32]

Fel =
q2

4πǫǫ0(r + h)2
H(h)n (2.2.17)

Here q is the charge of the robot, ǫ is the dielectric density of the medium of interaction,

and ǫ0 is the permittivity of vacuum. The expression for the maximum allowable charge

of a spherical body of radius r, as given by Hays, [33] is

q(µC) = S ×Q = 4πr2 × 30(100r)−0.3 (2.2.18)

2.2.5 Magnetic Force

The magnetic force Fm, that acts on the ferromagnetic micro-robot due to the magnetic

gradients produced by the gradient coils of the MRI system is given by

Fm = τmV (M.∇)B (2.2.19)

Here M represents the magnetization of the material of the micro-robot, µ0 is the perme-

ability of free space, and ∇B is the magnetic field gradient.

Note - The static field B0 of an MRI device suffices to ensure saturation magnetization

Msat of the material of the robot.

2.3 Summary

In this chapter, we have presented a detailed nonlinear model of the micro-robot, outlining

the forces that act on it. A suitable SMC based control strategy has been developed for

this model in the next chapter.
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Chapter 3

Development of a Fuzzy Sliding

Mode Controller with Adaptive

Tuning Technique for a

MRI-guided robot

3.1 Introduction

In this chapter, we develop a control strategy based on the nonlinear model that was pre-

sented in Chapter 2. We primarily contribute towards the design of a Fuzzy Sliding Mode

Controller (FSMC) for trajectory tracking of the micro robot in the human vasculature .

An adaptive algorithm based on Lyapunov stability theory is used to estimate the param-

eters associated with the FSMC. The proposed FSMC is able to eliminate the chattering

phenomenon completely which is present in conventional sliding mode control. Since the

system in consideration is a biological one, many parameters are difficult to estimate, re-

sulting in parametric uncertainties. A significant merit of the proposed framework is its

ability to estimate the dielectric density of blood on-line with great accuracy.

We begin our study by presenting a state space representation of the model under

consideration. This is followed up by development of the proposed control strategy and its

stability analysis. Next, simulation results are presented, which indicate perfect tracking

with very fast dynamical response. To illustrate the efficacy of our controller, a detailed

comparison is made between the performances of a state-of-the-art adaptive backstepping

control and our proposed control action, in the presence of bounded model uncertainties,
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for micro-robots made up of different ferromagnetic materials .

3.2 State Space Representation

Let (x, z) represent the position of the robot in the blood vessel with respect to a given

frame of reference F (O,~i,~k). The state space model is derived based on the differential

equation ( 2.2.1) which defines the dynamical behaviour of the robot along the ~i and ~k

axes










mẍ = Fmx + Fdx + Fcx + Fvdwx + Fex

mz̈ = Fmz + Fdz +Wa + Fcz + Fvdwz + Fez

(3.2.1)

where indexes x and z represent projections onto the ~i and ~k axes respectively. (Refer to

Figure 2.1).

Let x1,x2,(x3, x4) denote, respectively, the particle’s position and velocity along the

~i axis (respectively along the ~k axis). Under the assumption that the positions x1 and

x3 can be measured thanks to the MRI imaging system, let y denote the measured state.

Using ( 3.2.1) , and taking into account modeling errors, we obtain the following set of

state space equations

(S1)











ẋ1 = x2

ẋ2 = f2 + g2θ + U1 +D1

(S2)











ẋ3 = x4

ẋ4 = f4 + g4θ + U2 +D2

(3.2.2)

where f2 = Fdnx + Fcnx + Fvdwnx and f4 = Fdnz + Fcnz + Fvdwnz +Wan. The index n

indicates that the forces are normalized with respect to the robot’s mass m. Both f2 and

f4 are highly non-linear functions of the full state. These forces are expressed as

Fdnx
= −





9η cos(φ)

2r2βρ
||v − vf ||+

3ρf cos(φ)

20rβ2ρ
||v − vf ||2 +

9ρf cos(φ)

4rβ2ρ

||v − vf ||2

1 +
√

2ρf r
βη
||v − vf ||





Felnx
=

3q2 sin(ψ)

16π2r3ρǫǫ0

(

H(h1)

(r + h1)2
− H(h2)

(r + h2)2

)

Fvdwnx
=
Ah sin(ψ)

8πr2ρ

[(

1

h1
2 +

1

(2r + h1)2
− 2

h1(2r + h1)

)

H(h1) (3.2.3)

−
(

1

h2
2 +

1

(2r + h2)2
− 2

h2(2r + h2)

)

H(h2)

]

Fcnx =
3k sin(ψ)

4πr3ρ
δ

3

2H(δ)
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Here h1 and h2 are the distances of the robot from the lower and the upper walls of the

blood vessel respectively. φ represents the angle which the relative velocity of the robot

(with respect to the blood’s velocity) makes with the x-axis, and ψ represents the angle

which the normal from the robot to the wall makes with the z-axis. These expressions are

similar along the z axis and can be obtained as follows

Fdnz
= Fdnx

tan(φ)

Felnz
= −Felnx

cot(ψ)

Fvdwnz
= −Fvdwnx

cot(ψ) (3.2.4)

Fcnz = −Fcnx cot(ψ)

g2 and g4 represent the normalized electrostatic forces along the x and z directions without

the uncertain dielectric density ǫ term . The uncertain dielectric density of blood which

needs to be estimated is given by θ. Let U = (U1, U2)
T = (au1, au2)

T , where the control

inputs u1 = ∇Bx and u2 = ∇Bz, are the magnetic gradients and parameter a = τmM
ρ

.

D = (D1,D2)
T is the vector representing modeling errors , such that |Di| ≤ ρi, i = 1, 2,

where ρi’s are the known bounds on the modeling errors . Let Y = (x1, x3)
T and Z =

(x2, x4)
T represent the position and velocity vectors respectively of the micro-robot. Let

Xd = (xd, zd)
T represent the desired position trajectory of the micro-robot in the blood

vessel. The position and velocity trajectory tracking errors are defined as follows

e = (e1, e2)
T = Y −Xd (3.2.5)

ė = (ė1, ė2)
T = Ẏ − Ẋd (3.2.6)

Let the estimation error be defined as

θ̃ = θ − θ̂ (3.2.7)

where θ represents the uncertain dielectric density term and θ̂ represents its estimate.

Note- The dielectric density of blood varies highly from person to person and hence

it is considered to be an uncertain parameter in the model. The developed control scheme

should hence be able to estimate this parameter online.

3.3 Adaptive Fuzzy Sliding Mode Control Scheme

In this section we develop the proposed control scheme. It should serve two purposes :

1. Be able to estimate the dielectric density of blood online.
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Figure 3.1: Block Schematic of the Adaptive Fuzzy Sliding Mode Control Scheme

2. Ensure that the tracking error between the actual and the reference trajectory con-

verges to zero.

3.3.1 Conventional Adaptive Sliding Mode Control Technique

The sliding plane is defined as

S = ė+ λe (3.3.1)

Where S = [s1, s2]
T and λ = diag(λ1, λ2); λ1 and λ2 are positive constants. The objective

is to design a controller such that si (i = 1, 2) are driven to the sliding plane

si = ėi + λiei = 0, i = 1, 2. (3.3.2)

From ( 3.2.2), we can see that the system can be divided into two subsystems (S1) and

(S2). Since the two subsystems are similar in structure, the control law synthesis approach

for the first subsystem will be exactly similar to that for the second one. Thus, we focus

only on the first subsystem. We use the index 1 to denote all the terms associated with

the first subsystem.

Let us define a Lyapunov candidate function as follows

V1 =
1

2
s1

2 +
1

2

θ̃2

γ
(3.3.3)
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where γ is the adaptation gain such that γ > 0 Taking the derivative of ( 3.3.3), we obtain

V̇1 = s1ṡ1 +
θ̃ ˙̃θ

γ
(3.3.4)

From ( 3.2.2) and ( 3.3.2) we have

ṡ1 = ë1 + λ1ė1

= ẍ1 − ẍd + λ1(ẋ1 − ẋd)

= ẋ2 − ẍd + λ1(ẋ1 − ẋd)

= f2 + g2θ + U1 +D1 − ẍd + λ1(ẋ1 − ẋd) (3.3.5)

The equivalent control effort [63], [12] which is designed to guarantee desired performance

under nominal model is derived as the solution of ṡ1 = 0 without considering modeling

errors and unmodeled dynamics (D1 = 0). It is represented by Ueq1 and given by

Ueq1 = −f2 − g2θ̂ + ẍd − λ1(ẋ1 − ẋd) (3.3.6)

The equivalent control law makes use of the estimate of the dielectric density of blood θ̂.

The equivalent control effort cannot ensure favorable control performance in the presence of

unpredictable perturbations arising as a result of parameter variations. Thus, an auxiliary

control effort Uh1, known as the hitting control law, needs to be designed to eliminate the

effect of unpredictable perturbations. In conventional SMC, Uh1 is chosen as

Uh1 = k1sgn(s1) (3.3.7)

where k1 is the hitting control gain (k1 > 0) and sgn(.) is the sign function. k1 is chosen

such that k1 > ρ1. The complete control effort is given by

U1 = Ueq1 − Uh1 (3.3.8)

Using ( 3.3.5), ( 3.3.6), ( 3.3.7) and ( 3.3.8) in ( 3.3.4), we obtain

V̇1 = s1[g2(θ − θ̂)− k1sgn(s1) +D1] +
θ̃
˙̃
θ

γ

= −s1(k1sgn(s1)−D1) + θ̃(s1g2 +
˙̃
θ

γ
) (3.3.9)

Let the parameter update law be defined as

˙̃
θ = −γs1g2 (3.3.10)

or

˙̂
θ = γs1g2 (3.3.11)
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Figure 3.2: (a) Input membership function (b) Output membership function

This gives

V̇1 = −s1(k1sgn(s1)−D1)

≤ |s1|ρ1 − k1|s1|

= −|s1|(k1 − ρ1) ≤ 0 (3.3.12)

This ensures that the system is stable in the sense of Lyapunov.

3.3.2 Fuzzy hitting control law

If the upper bound of the modeling errors is chosen too high, the sign function of the

hitting law would cause serious chattering phenomenon in the control efforts. Although

the boundary layer approximation technique reduces the chatter amplitude, improper

choice of the width of the boundary layer might result in unstable tracking responses. In

order to overcome this effect, we employ a fuzzy logic inference mechanism [45, 54, 74] to

mimic the hitting law.

The sliding surface s1 is chosen as the input linguistic variable of the fuzzy logic and the

fuzzy hitting control law Uf 1 is taken as the output linguistic variable. The membership

functions for the input (s1) and output (Uf 1) fuzzy sets are shown in Figure 3.2. In

accordance with the nature of the hitting control law in ( 3.3.7), the fuzzy linguistic rule

base can be summarized as follows

Rule 1: If s1 is P (positive), then Uf 1 is PE (positive effort).

Rule 2: If s1 is Z (zero), then Uf 1 is ZE (zero effort).

Rule 3: If s1 is N (negative), then Uf 1 is NE (negative effort).

In our work, we use triangular type-input membership functions and singleton type

output membership function owing to their computational simplicity. For defuzzification,

the center-of-gravity method is adopted. The fuzzy hitting control law, estimated by the
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fuzzy logic inference mechanism is given by

Uf 1 =

3
∑

i=1

wiri

3
∑

i=1

wi

= w1r1 + w2r2 + w3r3 (3.3.13)

where 0 ≤ w1 ≤ 1, 0 ≤ w2 ≤ 1, and 0 ≤ w3 ≤ 1 are the firing strengths associated

with rules 1, 2 and 3 respectively ; r1 = r, r2 = 0 and r3 = −r are the centers of

the membership functions PE, ZE and NE respectively; r is the fuzzy parameter to be

tuned by an adaptive algorithm and the relation w1+w2+w3 = 1 holds true based on our

choice of special triangular membership functions. Noting that one of the four following

conditions would occur based on the value of s1, the hitting law Uf 1 is further analyzed.

Condition 1: Only rule 1 is triggered.

(s1 > Sa; w1 = 1; w2 = w3 = 0)

Uf 1 = r

Condition 2: Rules 1 and 2 are triggered simultaneously.

(0 < s1 ≤ Sa; 0 < w1, w2 ≤ 1; w3 = 0)

Uf 1 = r1w1 = rw1

Condition 3: Rules 2 and 3 are triggered simultaneously.

(Sb < s1 ≤ 0; w1 = 0; 0 ≤ w2, w3 < 1)

Uf 1 = r3w3 = −rw3

Condition 4: Only rule 3 is triggered

(s1 ≤ Sb; w1 = w2 = 0; w3 = 1)

Uf 1 = −r
Based on the four possible conditions, it can be seen that

s1(w1 − w3) = |s1||(w1 − w3)| ≥ 0 (3.3.14)

and

Uf 1 = r(w1 − w3) (3.3.15)

The AFSMC control law can be represented as

U1 = Ueq1 − Uf 1 = Ueq1 − r(w1 − w3) (3.3.16)

where Ueq1 is given by ( 3.3.6)
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3.3.3 Adaptive Fuzzy Parameter Tuning Algorithm

In this section we develop a simple adaptive algorithm based on Lyapunov stability theory

to tune the fuzzy parameter r. A schematic of the entire control architecture is shown in

Figure 3.1.

Theorem 3.3.1. For subsystem (S1) of the model ( 3.2.2), representing the dynamics of

the micro-robot in the human vasculature , the adaptive fuzzy sliding mode control law,

U1 = Ueq1 − r̂(w1 − w3), will stabilize the subsystem in the sense of Lyapunov, provided r̂

is updated using the update law ˙̂r = 1
α
(w1 −w3)s1, where α is a positive constant and θ̂ is

updated using the update law
˙̂
θ = γs1g2 where Ueq1 = −f2 − g2θ̂ + ẍd − λ1(ẋ1 − ẋd).

Proof. Let us consider the following control Lyapunov function candidate

V1 =
1

2
s1

2 +
1

2

θ̃2

γ
(3.3.17)

Taking the time derivative of the Lyapunov candidate, we get

V̇1 = s1ṡ1 +
θ̃
˙̃
θ

γ
(3.3.18)

From ( 3.3.5) we have

ṡ1 = f2 + g2θ + U1 +D1 − ẍd + λ1(ẋ1 − ẋd) (3.3.19)

Substituting ( 3.3.16) in ( 3.3.19) and then in ( 3.3.18) gives

V̇1 = s1[g2(θ − θ̂)− r(w1 − w3) +D1] +
θ̃
˙̃
θ

γ

= −s1[r(w1 − w3)−D1] + θ̃(s1g2 +
˙̃
θ

γ
) (3.3.20)

Using ( 3.3.10) in ( 3.3.20) we obtain

V̇1 = −s1[r(w1 − w3)−D1] (3.3.21)

If

r >
D1

(w1 − w3)
(3.3.22)

then the condition V̇1 ≤ 0 will be satisfied. According to ( 3.3.22), there exists an optimal

value for r∗ to achieve minimum control efforts and to ensure Lyapunov stability and it is

given by

r∗ =
D1

(w1 − w3)
+ ǫ (3.3.23)

where ǫ is a small positive constant.
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Owing to the model uncertainties , the optimal value r∗ cannot be ascertained in

advance for practical applications. Hence, we employ a simple adaptive algorithm to

estimate the optimal value r∗ . The estimation error is defined as

r̃ = r̂ − r∗ (3.3.24)

where r̂ is the estimated value of r∗. Choose a Lyapunov candidate as

V1(s1, r̃, θ̃) =
1

2
s1

2 +
1

2

θ̃2

γ
+

1

2
αr̃2 (3.3.25)

where α is a positive constant. Taking the derivative of V1(s1, r̃, θ̃) with respect to time,

and using ( 3.3.10),( 3.3.19) and ( 3.3.24), one can obtain

V̇1(s1, r̃, θ̃) = s1ṡ1 +
θ̃
˙̃
θ

γ
+ αr̃ ˙̃r

= s1[g2(θ − θ̂)− r̂(w1 − w3) +D1] +
θ̃
˙̃
θ

γ
+ αr̃ ˙̃r

= −s1[r̂(w1 −w3)−D1] + θ̃(s1g2 +
˙̃
θ

γ
) + αr̃ ˙̃r

= −s1[r̂(w1 −w3)−D1] + αr̃ ˙̃r (3.3.26)

Substituting ( 3.3.23) in ( 3.3.26) we obtain

V̇1(s1, r̃, θ̃) = −s1[r̃(w1 − w3) + ǫ(w1 − w3)] + αr̃ ˙̃r

= −s1ǫ(w1 − w3) + r̃[α ˙̃r − s1(w1 − w3)]

(3.3.27)

If the adaptation law for the fuzzy parameter is chosen as

˙̂r =
1

α
s1(w1 − w3), (3.3.28)

( 3.3.27) becomes

V̇1(s1, r̃, θ̃) = −s1ǫ(w1 − w3) (3.3.29)

From the inequality s1(w1 − w3) ≥ 0 and the fact that ǫ is a positive constant, one can

obtain that V̇1(s1, r̃, θ̃) ≤ 0, that is, V̇1(s1, r̃, θ̃) is negative semi-definite. This implies that

s1(t), r̃(t) and θ̃(t) are bounded. Let function F (t) = s1ǫ(w1−w3) = −V̇1(s1(t), r̃(t), θ̃(t)).
Integrating F (t) with respect to time

∫ t

0
F (τ)dτ = V1(s1(0), r̃(0), θ̃(0)) − V1(s1(t), r̃(t), θ̃(t)) (3.3.30)
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As V1(s1(0), r̃(0), θ̃(0)) is bounded and V1(s1(t), r̃(t), θ̃(t)) is non-increasing and bounded,

the following result can be obtained

lim
t→∞

∫ t

0
F (τ) <∞ (3.3.31)

Taking the derivative of F (t), we get

Ḟ = ṡ1(w1 − w3)ǫ+ ǫs1(ẇ1 − ẇ3) (3.3.32)

From ( 3.3.16) and ( 3.3.19), it is clear that

ṡ1 = [g2θ̃ − r̂(w1 − w3) +D1] (3.3.33)

As D1 < ρ1 and 0 ≤ w1, w3 ≤ 0 , from ( 3.3.23) it is obvious that r∗ is bounded. As r∗

and r̃ are both bounded , r̂ is also bounded. Since, g2 is bounded , ṡ1 is also bounded .

Further, since ẇ1,ẇ3 are bounded, Ḟ (t) is bounded for all time. Hence, F (t) is uniformly

continuous. Thus, by Barbalat’s Lemma [63], it can be shown that limt→∞ F (t) = 0, that

is , s1 → 0 as t → ∞. This proves that the system is asymptotically stable and that the

tracking error will converge to zero as s1 → 0. The AFSMC control law Ueq2 for subsystem

(S2) can be derived in a similar manner.

Note - The final control law is a function of the position error and also its derivative.

The derivative of the position error requires knowledge of the velocity of the micro-robot.

However, the MRI imaging modality can provide information regarding the position only.

Thus, an observer is required to estimate the velocity of the micro-robot along the horizontal

and vertical directions. For this purpose, we choose the structure of the high gain observer

proposed in [8]. The choice of this observer is motivated by the fact that locally Lipschitzian

state’s functions ensure the convergence of the observer. It has been shown by the authors

in [8], that the model ( 3.2.2) satisfies this constraint. In this work, we focus on the

development of the controller only.
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Table 3.1: Simulation Data

Plasma’s viscosity ηplasma 5× 10−3[Pa.s]

Blood’s density ρf 1060[kg.m−3]

Vf . 025[m.s−1]

af 1.15
Blood’s velocity

wf 2π

parameters φf
π
2

Robot’s density ρm 8200[kg.m−3]

Robot’s radius r 350[µm]

Robot’s Young modulus Ep 109[Pa]

Wall’s Young modulus Ew 106[Pa]

Robot’s Poisson’s ratio σp 0.27

Permanent deformation δ0 0[m]

Vessel’s diameter D 3[mm]

Polymer’s density ρpoly 1500[kg.m−3]

Ferromagnetic ratio τm 0.95

Magnetization M 1.95 × 106[A.m−1]

Hematocrit hd 0.45

Hamaker constant Ah 4× 10−19[J ]

Blood’s dielectric density ǫ 77[C2.N−1.m−2]

(x10, x20, x30, x40) (0.001, 0, 0.002, 0)
Initial conditions

(x̂10, x̂20, x̂30, x̂40) (0.001, 0.001, 0.002, 0.001)

Input saturation Usat 80[mT.m−1]

(k1, k2) (5, 5)

(λ1, λ2) (15, 15)
Control parameters

α, γ 10, 1013

Sa, Sb (0.001,−.001)

L 800
Observer gains

(g1, g2, g3, g4) (−20,−20,−20,−20)

Initial conditions on Fuzzy parameters (r10, r20) (150, 150)
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Table 3.2: Comparison of the two control techniques

Backstepping Control AFSMC

Material
Mean Tracking Error Mean Control Input Mean Tracking Error Mean Control Input

ex(µm) ez(µm) ux(mT.m
−1) uz(mT.m

−1) ex(µm) ez(µm) ux(mT.m
−1) uz(mT.m

−1)

Permendur 14.77 70.99 12.5 36.1 8.76 4.56 12.9 36.3

NdFeB-35 14.48 60.91 19.8 51.6 8.75 4.53 20.4 51.7

Alfenol 14.61 72.59 38.4 85.6 8.68 4.49 39.8 85.3

Supermalloy 15.01 74.69 30.7 96.6 8.79 4.57 32.1 96.6

Fe304 15.32 56.9 70.3 117.1 8.71 4.54 71.6 117

Average 14.84 67.22 34.34 77.4 8.74 4.54 35.36 77.42

3.4 Simulation Results and Analysis

The simulations are conducted keeping in mind the limitations of a clinical MRI system.

It is assumed that the MRI devices can provide a maximum magnetic field gradient of

80mT.m−1. This limitation is additionally affected by the gradient coils’ duty cycle and

by the multiplexing needed for both controlling and observing. To ensure that the control

amplitudes do not exceed the capacity of the MRI system, the applied control law Ua is

adjusted as follows

Ua =
U

k
, k = max[1,

U

Usat
] (3.4.1)

where Usat = 80mT.m−1 is the maximum magnetic field gradient that can be provided by

the MRI coils.

The robot is made to track the center-line of a blood vessel. First, we test the ro-

bustness of the proposed AFSMC methodology by comparing its tracking performance

with the adaptive backstepping control developed in [9]. Based on the dynamic model

developed in [6] and the proposed control action, the simulation parameters are defined in

Table 3.1. For the adaptive backstepping control, the control gains are k1 = 20, k2 = 20.

To have a fair comparison between both the control techniques, the Observer gains are

kept same for both the methods. Also, simulations are done on both the techniques us-

ing the same set of simulation parameters for the model, and the same initial conditions

which are mentioned in Table 3.1 . To test the robustness of the schemes, we choose

D = (0.01sin(4πt), 0.01cos(4πt)) to physically represent unmodeled dynamics of the sys-

tem. The tracking performance of the AFSMC and adaptive backstepping control in the

presence of the disturbances are plotted in Figure 3.3 and Figure 3.4 respectively . It is
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Table 3.3: Material Properties

Material Magnetization at Saturation (A.m−1) ρ(kg.m−3)

Permendur 1.95 × 106 8200

NdFeB-35 1.23 × 106 7500

Alfenol 0.63 × 106 6500

Supermalloy 0.79 × 106 8800

Fe304 0.35 × 106 5200

seen that whereas the AFSMC methodology causes convergence of the actual trajectory

to the reference trajectory, the adaptive backstepping approach fails in this context. This

clearly establishes the superior robustness of the proposed approach.

To have a detailed comparison of the backstepping approach with the proposed AFSMC

scheme, Table 3.2 provides an insight into the mean tracking errors and the control efforts

required for both the techniques, for micro-robots made up of different ferromagnetic

materials. The material properties are listed in Table 3.3. It can be seen that although

the control efforts required are nearly the same, the tracking accuracy of the AFSMC

scheme is far better than that of the backstepping approach. It is to be noted that for

this comparison, no limits have been set on the control input. This is done purposely to

also ascertain the best material, which ensures that the magnetic gradients of the MRI

coils remain within the practical limit of 80mT.m−1. Permendur and NdFeB-35 satisfy

this criterion and hence are ideal candidates for material fabrication of the micro-robot.

The position and velocity error trajectories in the presence of time-varying disturbances

with the AFSMC method are shown in Figure 3.5 and Figure 3.6 respectively. Clearly, the

proposed control action causes the position and velocity errors to converge to zero within

0.5 seconds. The mean position tracking errors in the transient period are limited to

8.76µm and 4.56µm along the x and z directions respectively, indicating the high tracking

accuracy of the controller. The simulation is performed assuming an initial error of 30%

from the nominal blood’s dielectric value. It is seen from Figure 3.7 that the estimated

parameter converges to its true value at steady state. The motivation behind estimating

the uncertain parameter ǫ on-line is justified. This is because among the physiological

parameters of the model, which are the most difficult to measure and are very variable

from one patient to another, sensitivity is the highest for ǫ .

The effectiveness of the developed scheme is investigated by comparing it with the

conventional SMC. Figure 3.9 shows the chattering phenomenon present in conventional
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SMC. Figure 3.10 shows that with the AFSMC technique, the control inputs are much more

smooth and that the chattering phenomenon has been completely eliminated. Further,

the control inputs are within the necessary bounds imposed for this application and hence

there is no saturation. Thus, the results indicate that the designed controller is inherently

robust to even time varying perturbations. From Figure 3.3, it should be noted that since

the curvature of the blood vessel is very small (the blood vessel can be thought of as a

nearly horizontal pipe), the horizontal component of the drag force is much larger than

the vertical component. A direct consequence of this effect is reflected in Figure 3.10

where the z-component (vertical component) of the control input remains nearly constant.

This is because it has to mainly counter-balance the apparent weight of the micro-robot

which is far larger than the vertical component of the drag force. Assuming that the drag

force along the vertical direction is zero, the magnetic field gradient uz = ∇Bz along the

z-direction required to balance the apparent weight would be given by

uz = ∇Bz =
(ρ− ρf )g

M
= 34.23mT.m−1 (3.4.2)

where ρ = τmρm + (1 − τm)ρpoly. From simulations, it is found that once steady state is

reached, the control input uz varies from 34.6mT.m−1 to 35.9mT.m−1. This shows that

indeed the effect of apparent weight dominates that of the vertical component of drag

force. The slight variations are due to the non-zero vertical component of drag force.

Figure 3.8 shows the time evolution of the sliding surfaces.

Note - In this study, we have designed the controller to make the micro-robot track the

center line of a blood vessel. However, this is not the most optimal trajectory in terms of

required control effort. From force balance, it is possible to obtain a set of optimal points

which minimize the control effort ( in this case the magnetic force Fm ) and then link

them using B-splines to obtain a C2 reference trajectory. This is a topic of research in

itself and an interested reader is referred to [49]. In our work, we primarily focus on the

precision that can be achieved given a trajectory and not on the details which are involved

in defining the trajectory itself.
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Figure 3.3: Reference and Actual trajectories of the micro-robot in the case of AFSMC
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Figure 3.5: Position error trajectories of the microrobot in the case of AFSMC with

disturbance
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Figure 3.6: Velocity error trajectories of the microrobot in the case of AFSMC with

disturbance
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Figure 3.7: Estimation of blood’s dielectric density ǫ
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Figure 3.9: Control input in the case of SMC with disturbance
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Figure 3.10: Control input in the case of AFSMC with disturbance
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3.5 Summary

In this chapter we designed an adaptive fuzzy sliding mode controller which serves two

purposes - it achieves perfect trajectory tracking of a therapeutic micro-robot navigating

in a blood vessel along a predefined trajectory, and it also performs on-line estimation of

a key physiological parameter - the dielectric density of blood. A comparative study with

the adaptive backstepping approach indicates the robustness of our methodology in the

presence of bounded time varying perturbations. The developed AFSMC system is seen to

remove the chattering effect altogether, yielding smooth control laws, which remain within

the bounds set for this application. The adaptive algorithm developed to tune the fuzzy

parameter proves to be effective in confronting modeling errors and system uncertainties.

Thus, the feasibility of an Adaptive Fuzzy Sliding Mode Control technique for trajectory

tracking of a micro-robot in the human vasculature, is investigated in sufficient detail and

the validity of the approach is established via simulation results.
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Chapter 4

Dynamic Modeling of the Barrett

Whole Arm Manipulator (WAM)

and Experimental Validation

4.1 Introduction

Precise model based control necessitates the requirement of an accurate model of the

robotic system. The major contribution of this chapter is the development of a dynamic

model for 4 DOF operation of the Barrett Whole Arm Manipulator (WAM). We use the

recursive Newton-Euler technique to achieve the same. A detailed description of the pa-

rameters required for implementing the Newton-Euler algorithm is presented. We validate

the accuracy of the derived model through rigorous experimental studies. Specifically, we

test the precision in trajectory tracking tasks using two popular nonlinear control strate-

gies - Backstepping and Sliding Mode, and draw a comparison between the two techniques.

While several papers have addressed the trajectory tracking problem in simulation stud-

ies on two-link planar rigid manipulators, the differences existing between the nominal

model and the real model, owing to friction and other unmodeled dynamic terms, make

experimental validation a challenging task. The precise trajectory tracking results which

we achieve through our experiments, illustrate the accuracy of the model so derived and

the effectiveness of the control schemes in real experiments as opposed to confinement to

simulation studies.
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4.2 Newton-Euler Technique

The Newton-Euler formulation is based on three important laws of mechanics -

• Every action has an equal and opposite reaction. Thus, if link i exerts a force f and

a torque τ on link i + 1, then link i + 1 in turn exerts a force −f and a torque −τ
on link i.

• The rate of change of linear momentum equals the total force applied to the link.

• The rate of change of angular momentum equals the total torque applied to the link.

Based on these basic principles, the governing equations for this technique can be derived

[64], [34]. We present the main steps of implementation of the Newton-Euler algorithm -

Algorithm 1 Newton-Euler Algorithm

Forward Recursion : Computing ωi, αi and ac,i

Initial Conditions: ω0 = 0, α0 = 0, ac,0 = 0 and ae,0 = 0

for each i := 1 to n do

ωi ← Ri
i−1ωi−1 + biq̇i ; where bi = Ri

i−1z0

αi ← Ri
i−1αi−1 + biq̈i + ωi × biq̇i

ae,i ← Ri
i−1ae,i−1 + ω̇i × ri,i+1 + ωi × (ωi × ri,i+1)

ac,i ← Ri
i−1ae,i−1 + ω̇i × ri,ci + ωi × (ωi × ri,ci)

end for

Backward Recursion : Computing fi and τi

Terminal Conditions: fn+1 = 0, τn+1 = 0

for each j := n to 1 do

gi ← Ri
0g0

fi ← Ri
i+1fi+1 +miac,i −migi

τi ← Ri
i+1τi+1 − fi × ri,ci +

(

Ri
i+1fi+1

)

× ri+1,ci + Iiαi + ωi × (Iiωi)

end for

As can be seen from Algorithm 1, there are two key steps in the Newton-Euler technique

- The Forward Recursion, which involves the computation of the angular velocity, angular

acceleration and linear acceleration of each link, starting from the first link and moving

outwards, and the Backward Recursion, which involves computation of the forces and

torques at each link, starting from the n-th link and moving inwards. Figure 4.1 shows a

random link and the forces and torques acting on it.
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Figure 4.1: Forces and Torques acting on a random link [64]

Notation : The notation used is described as follows :

ac,i — Acceleration of center of mass of link i in frame i.

ae,i — Acceleration of end of link i in frame i.

ωi — Angular velocity of frame i w.r.t frame i.

αi — Angular acceleration of frame i w.r.t frame i.

gi — Acceleration due to gravity in frame i.

fi — Force exerted by link i− 1 on link i in frame i.

τi — Torque exerted by link i− 1 on link i in frame i.

Ri+1
i — Rotation matrix from frame i+ 1 to frame i.

mi — Mass of link i.

Ii — Inertia matrix of link i, about a frame parallel to frame i, whose

origin is at the center of mass of link i.

ri,ci — Vector from joint i to the center of mass of link i.

ri+1,ci — Vector from joint i+ 1 to the center of mass of link i.

ri,i+1 — Vector from joint i to joint i+ 1.

4.3 System Description and Modeling

Barrett, the leader in advanced robotic manipulators, provides information about the D-

H parameters of the WAM and also about its inertial specifications in its data sheets.

However, a dynamic model of the WAM is not disclosed. In our work, we have derived a

dynamic model of the Barrett WAM for 4 degree-of-freedom operation. The parameters

required for obtaining this model are detailed in this section. Schematics of the Barrett

WAM with its 7 revolute joints are shown in Figure 4.2 (copyright has been obtained from

Barrett). The necessary D-H parameters of the Barrett WAM are provided in Table 4.1.
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Figure 4.2: WAM 7-DOF dimensions and D-H frames

Table 4.1: D-H Parameters for the 4-DOF Barrett WAM Manipulator

k ak (m) αk (rad) dk (m) θk

1 0 −π/2 0 θ1

2 0 π/2 0 θ2

3 0.045 −π/2 0.55 θ3

4 -0.045 π/2 0 θ4

For obtaining the necessary rotation matrices, we use the generalized D-H transform

matrix

Ti−1
i =

















cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1

















(4.3.1)

It should be noted that we follow the convention of [64] in our work. c denotes the
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cos function and s denotes the sin function. The lengths in the D-H specifications are in

meters.

Using equation ( 4.3.1) and the D-H parameters of the WAM, we derive the following

rotation matrices

R0
1 =











cθ1 0 −sθ1
sθ1 0 cθ1

0 −1 0











(4.3.2)

R1
2 =











cθ2 0 sθ2

sθ2 0 −cθ2
0 1 0











(4.3.3)

R2
3 =











cθ3 0 −sθ3
sθ3 0 cθ3

0 −1 0











(4.3.4)

R3
4 =











cθ4 0 sθ4

sθ4 0 −cθ4
0 1 0











(4.3.5)

Figure 4.3 shows the different vectors associated with link i. Specifically, we need the

link vectors rii,i+1, r
i
i,ci

and rii+1,ci
for i = 1, 2, 3 and 4. The superscript i indicates that the

vectors need to be expressed in frame i. From the definition of Transformation matrices,

we know that the vector v = [aicθi, aisθi, di]
T represents the vector pointing from Joint i

to Joint i + 1 expressed in frame i− 1. We need to express this vector in frame i. From

Figure 4.3, we can see that

rii,i+1 = P i
A − P i

B , (4.3.6)

where P i
A and P i

B represent the position vectors of points A and B in frame i. Now, we

know that any random point P i−1
R in frame i−1 is transformed to frame i via the relation





P i
R

1



 = Ti
i−1





P i−1
R

1



 (4.3.7)

Now, we have

Ti
i−1 = (Ti−1

i )−1 =

[

RT −RTv
0 1

]

, (4.3.8)

where R = Ri−1
i . Here, we have used the property that rotation matrices are orthogonal.
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Figure 4.3: Vectors associated with link i

Clearly, P i−1
B = [0, 0, 0]T and P i−1

A = v. Using equations ( 4.3.7) and ( 4.3.8), we get





P i
B

1



 =

[

RT −RTv
0 1

]

















0

0

0

1

















=





−RTv

1



 (4.3.9)

and




P i
A

1



 =

[

RT −RTv
0 1

]





v

1



 =





0

1



 (4.3.10)

Using equations ( 4.3.6), ( 4.3.9) and ( 4.3.10), we get the desired result

rii,i+1 = RTv = [ai, disαi, dicαi]
T (4.3.11)

The inertial specifications of the WAM provides the rii+1,ci
vector i.e. the position vector

of the centre of mass of link i w.r.t to frame i. From the Figure 4.3, we see that the

following relation holds

rii,ci = rii,i+1 + rii+1,ci (4.3.12)

Equations ( 4.3.11) and ( 4.3.12) can be used to find the necessary link vectors. Using

these equations, the link vectors so obtained are tabulated in Table 4.2. The link masses

are - m1 = 8.3936 kg, m2 = 4.8487 kg, m3 = 1.7251 kg and m4 = 1.0912 kg. It should
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Table 4.2: Link Vectors

i rii+1,ci
(in mm) rii,ci (in mm) rii,i+1 (in mm)

1 [0.3506, 132.6795, 0.6286]T [0.3506, 132.6795, 0.6286]T [0, 0, 0]T

2 [−0.223,−21.3924, 13.3754]T [−0.223,−21.3924, 13.3754]T [0, 0, 0]T

3 [−38.7565, 217.9078, 0.0252]T [6.2435,−332.0922, 0.0252]T [45,−550, 0]T

4 [6.2895,−0.001, 111.0633]T [−38.7105,−0.001, 111.0633]T [−45, 0, 0]T

be noted that the masses of the electrical and mechanical cables are not included in the

inertial specifications. This data is obtained from the inertial specifications of the Barrett

WAM. We also obtain the following inertia matrices from the same source -

I1 = 10−6











95157.4294 246.1404 −95.0183
246.1404 92032.3524 −962.6725
−95.0183 −962.6725 59290.5997











(4.3.13)

I2 = 10−6











29326.8098 −43.3994 −129.2942
−43.3994 20781.5826 1348.6924

−129.2942 1348.6924 22807.3271











(4.3.14)

I3 = 10−6











56662.2970 −2321.6892 8.2125

−2321.6892 3158.0509 −16.6307
8.2125 −16.6307 56806.6024











(4.3.15)

I4 = 10−6











18890.7885 −0.8092 −1721.2915
−0.8092 19340.5969 17.8241

−1721.2915 17.8241 2026.8453











(4.3.16)

It should be noted that the unit of each entry of the above matrices is kg-mm2. This

completes the necessary system description. Armed with this data, one can implement

Algorithm 1. Two other points need to be mentioned in this regard. For forward recursion,

the vector z0 = [0, 0, 1]T and for backward recursion, the vector g0 = [0, 0,−g]T , where g
is the acceleration due to gravity. These results follow directly from the way in which the

frames are assigned.

The implementation of the Newton-Euler algorithm has been done using the software

Maple. The choice was justified by the ability of Maple to carry out heavy symbolic

calculations. The Maple code used for deriving the model is provided here [2] [link]. The

M , C and G matrices necessary for state-space representation are also derived using this

https://drive.google.com/file/d/0B1SCfVjLdPjZekFMLXJpUnRJTzg/view?usp=sharing
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code. For testing our control laws in a simulation environment, we have used the Matlab

platform. Thus, the model derived in Maple has been imported to Matlab. The Maple to

Matlab conversion has also been demonstrated in the Maple code. It should be noted that

this code can be used to derive rigid body models for a generalized n-link manipulator

with revolute joints.

Note -

• The D-H specifications can be obtained here [link].

• The Barrett Arm Inertial Specifications are available here [link].

4.4 Experimental Validation

4.4.1 State Space Representation

The standard model representing the dynamics of the robotic system as obtained via the

Newton Euler technique is

M(q)q̈ + C(q, q̇) + G(q) = τ (4.4.1)

where q ∈ ℜ4 represents the joint position vector, q̇ ∈ ℜ4 is the joint velocity vector,

q̈ ∈ ℜ4 is the joint acceleration vector, M(q) ∈ ℜ4×4 is the symmetric, positive definite

inertia matrix, C(q, q̇) ∈ ℜ4 is the Coriolis and Centrifugal vector and G(q) ∈ ℜ4 is the

Gravity vector. τ represents the vector of applied joint torques to the system.

For applying the control techniques, we need to express the model given by ( 4.4.1) in

the standard nonlinear control affine form. To this end, we define the following

x , [q1, q2, q3, q4]
T

z , [q̇1, q̇2, q̇3, q̇4]
T

f(x, z) , −M−1(C+G)

g(x) , M−1

u , τ

Based on these notations, the state space model for ( 4.4.1) becomes

ẋ = z

ż = f(x, z) + g(x)u (4.4.2)
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4.4.2 Control Strategies

Backstepping Control Design

Step 1: Design of the virtual control law zd

The tracking error is defined as e1 , x− xd. Here xd is the reference trajectory. A

Lyapunov candidate is chosen as

V1 =
1

2
e1

Te1 (4.4.3)

The time derivative of this Lyapunov candidate yields

V̇1 = e1
T ė1

= e1
T (z− ẋd) (4.4.4)

Let the virtual control law be defined as

zd , ẋd −K1e1 (4.4.5)

where K1 = diag(k1, k2, k3, k4); k1, k2, k3 and k4 are positive constants. Let e2 , z− zd.

Using ( 4.4.4), ( 4.4.5) and the definition of e2, we get

V̇1 = −e1TK1e1 + e1
Te2 (4.4.6)

Step 2: Design of the actual control law u

Let the augmented Lyapunov function V2(e1, e2) be chosen as

V2 = V1 +
1

2
e2

Te2 (4.4.7)

Using ( 4.4.2), the time derivative of this function gives

V̇2 = V̇1 + e2
T ė2

= −e1TK1e1 + e2
Te1 + e2

T (ż− żd)

= −e1TK1e1 + e2
T (e1 + f(x, z) + g(x)u − żd) (4.4.8)

Let the actual control law be chosen as

u = g(x)−1(−f(x, z) + żd − e1 −K2e2) (4.4.9)

where K2 = diag(d1, d2, d3, d4); d1, d2, d3 and d4 are positive constants. From ( 4.4.8) and

( 4.4.9), we have

V̇2 = −e1TK1e1 − e2
TK2e2 < 0 (4.4.10)
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as K1 and K2 are positive definite matrices. Thus, the system is shown to be asymp-

totically stable in the sense of Lyapunov. This would imply that as t → ∞, e1, e2 → 0.

Thus, perfect tracking would be established. The control law as given by ( 4.4.9) can be

expressed in terms of the state variables and the system parameters as

u = (C+G) +M(ẍd − (K1 +K2)(z− ẋd)

−(I+K1K2)(x− xd))
(4.4.11)

Sliding Mode Control Design

As mentioned earlier, the main advantage of the SMC methodology over other nonlin-

ear control techniques is its invariance to process dynamics characteristics and external

perturbations. This can be established analytically. To this end, we rewrite the state

space model given by ( 4.4.2) by including a matched disturbance vector d. It represents

deviations from the nominal model. We base our analysis on two assumptions:

• We use the well-known property of robot dynamics that ||M−1(q)|| ≤ α, where α is

a known bounded positive constant.

• The disturbance vector d = [d1, d2, d3, d4]
T is bounded, i.e |di| ≤ βi, i = 1, 2, 3, 4,

where βi is the known bound on the disturbance.

The state space model is rewritten as

ẋ = z

ż = f(x, z) + g(x)u + g(x)d (4.4.12)

Let the tracking error be defined by e , x− xd. A sliding surface S is chosen such that

S = ė+ λe (4.4.13)

where λ = diag(λ1, λ2, λ3, λ4); λ1, λ2, λ3 and λ4 are positive constants.

The objective is to design u in such a way that S is driven to zero. Let a Lyapunov

function V be defined as

V =
1

2
STS (4.4.14)

The time derivative of V along the closed-loop trajectory gives

V̇ = STṠ

= ST(ë+ λė)

= ST(f(x, z) + g(x)u + g(x)d − ẍd + λ(z− ẋd)) (4.4.15)
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Let the actual control law be chosen as

u = g(x)−1(−f(x, z) + ẍd − λ(z− ẋd)−Ksgn(S)) (4.4.16)

where K = diag(k1, k2, k3, k4); k1, k2, k3 and k4 are positive constants. The lower bounds

on these constants will be ascertained later. Replacing the expression for u in ( 4.4.15),

we get

V̇ = ST(g(x)d −Ksgn(S))

= −
4
∑

i=1

ki|si|+ STM−1d

≤ −
4
∑

i=1

|si|(ki − αβi) (4.4.17)

Thus, if the gains of the controller are chosen to satisfy the constraint ki > αβi, then

from ( 4.4.17) it follows that V̇ < 0. This guarantees the sliding condition and the system

becomes asymptotically stable in the sense of Lyapunov. This in turn ensures that the

tracking error would converge to zero. The final control law u can be expressed in terms

of the system states and parameters as

u = C+G+M(ẍd − λ(z− ẋd)−Ksgn(S)) (4.4.18)

Comparing ( 4.4.18) with ( 4.4.11), we observe that the control structures for both the

control algorithms are very similar except for the discontinuous Ksgn(S) term in the case

of SMC. This is known in literature as the ‘hitting law’ and it makes the SMC robust to

matched perturbations for proper choices of K. However, it also causes the control input

to chatter. In order to reduce chattering, we use the Boundary Layer method. The signum

function is accordingly replaced by a saturation function si
(|si|+ǫ) , where ǫ represents the

width of the boundary layer.

4.4.3 Experimental Results

Individual Joint Motion Testing

For the first experiment, we perform trajectory tracking on each joint separately i.e for a

single run, only one joint is given a trajectory to track while the others are constrained

to remain at their initial conditions. This process is repeated for each of the 4 joints for

both the control algorithms. Due to the high coupling between the joints, a finite torque

is required to keep the 3 constrained joints at their initial positions, while a single joint

moves. Each joint in turn is given a sinusoidal trajectory which it needs to track. This
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is of the form θi = Ai sin(ωit). Ai is chosen to be 1 for Joints 1, 2 and 4 and 0.5 for

Joint 3. This is because through our experiments we have observed that Joint 3 on an

average requires much more torque as compared to the other 3 joints. We have performed

experiments for varying angular frequencies ωi for every joint. It is to be noted that the

initial conditions for testing each joint are different (to avoid self collisions) and they are

mentioned below

• For Joint 1: [θ10, θ20, θ30, θ40] = [0,−π
2 , 0, π]

• For Joint 2: [θ10, θ20, θ30, θ40] = [0, 0, 0, π]

• For Joint 3: [θ10, θ20, θ30, θ40] = [0,−π
2 , 0, π]

• For Joint 4: [θ10, θ20, θ30, θ40] = [0,−π
2 , 0,

π
2 ]

Table 4.3 presents a detailed report of this experiment, outlining the Root Mean Square

Error (RMSE) and Mean Control Input required for each joint. Although in our formu-

lations we have used the G vector, since the system is internally gravity compensated,

we present the values of torque over this gravity compensation term i.e. the value of the

Sliding Mode/Backstepping Control excluding the gravity term. From the results in Table

4.3, the following observations have been made

• The tracking performance for Joints 1 and 2 are comparable for both the control

techniques. However, for Joint 3 in particular, the Sliding Mode Control technique

with an RMSE of 3.38 mrad performs much better as compared to Backstepping

which has a high RMSE of 43.45 mrad. This can be attributed to the fact that

Joint 3 has the highest uncertainty in dynamics associated with it, ( the reason why

it requires higher control effort as mentioned earlier) and that the Sliding Mode

technique is more robust a control scheme as compared to Backstepping.

• The error in tracking is more predominant at the peaks of the sinusoidal trajectory

which correspond to reversals in direction of motion.

• It is noted that the control effort for both the control algorithms increases with an

increase in operating frequency, which is to be expected as the joints need to be

moved faster, necessitating higher values of torques.

• The control efforts for both the techniques are nearly the same.
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Table 4.3: Comparison of the two control techniques

Backstepping Control Sliding Mode Control

Frequency
RMSE (in mrad) Mean Control Input (in N-m) RMSE (in mrad) Mean Control Input (in N-m)

(rad/s) Jnt.1 Jnt.2 Jnt.3 Jnt.4 Jnt.1 Jnt.2 Jnt.3 Jnt.4 Jnt.1 Jnt.2 Jnt.3 Jnt.4 Jnt.1 Jnt.2 Jnt.3 Jnt.4

0.6 6.0 8.7 40.8 15.0 2.80 3.61 2.05 1.21 8.5 3.4 2.5 10.1 2.76 3.47 2.22 1.30

0.8 7.1 9.5 41.8 15.0 2.86 3.72 2.09 1.22 9.8 7.3 2.9 10.2 2.93 3.69 2.27 1.31

1 8.7 10.7 44.6 15.3 3.04 3.95 2.21 1.27 11.6 14.1 5.0 10.8 3.07 3.87 2.39 1.30

1.2 9.6 12.2 46.6 15.6 3.12 4.08 2.29 1.27 11.8 19.8 3.1 10.7 3.19 4.01 2.48 1.29

Average 7.85 10.27 43.45 15.22 2.96 3.84 2.16 1.24 10.43 11.15 3.38 10.45 2.99 3.76 2.34 1.30

Table 4.4 presents the figures for the case ω = 0.8rad/s . As was observed from Table 4.3,

the tracking performance for Backstepping control for Joint 3 is inferior to that of SMC.

Also, it can be seen that the control effort is smoother for Backstepping as compared to

that for SMC inspite of using the Boundary Layer technique.

Combined Joint Motion Testing

In this experiment, we study the effect of combined motion of the joints. Each joint is

given a sinusoidal trajectory which it has to track. The reference trajectories for each of

the joints are as follows:

• θ1ref = sin(0.8t)

• θ2ref = π
4 sin(0.8t)

• θ3ref = 1
2 sin(0.8t)

• θ4ref = sin(0.8t)

The initial condition for this experiment is taken to be [θ10, θ20, θ30, θ40] = [0,−π
4 , 0,

π
2 ].

The trajectory plots for this experiment for SMC and Backstepping are shown in Figures

4.4 and 4.5 respectively. The Mean Control effort and RMSE are shown in Figures 4.6

and 4.7 respectively. It can be seen that the tracking performance is better for every joint

in the case of SMC. However, this comes at the cost of higher control effort as is evident

from Figure 4.6.
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Table 4.4: Details of the First Experiment for ω = 0.8rad/s. Row 1 shows the trajectory

responses for each of the four joints for SMC. Row 2 shows the Control efforts for SMC.

Row 3 shows the trajectory responses for each of the four joints for Backstepping. Row 4

shows the Control efforts for Backstepping
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Figure 4.4: Details of Experiment 2: Combined motion of 4 Joints using SMC
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Figure 4.5: Details of Experiment 2: Combined motion of 4 Joints using Backstepping
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Figure 4.6: Mean control effort comparison for experiment 2

Figure 4.7: RMSE comparison for experiment 2
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4.5 Summary

In this chapter, we have developed a dynamic model for 4 DOF operation of the Barrett

WAM. The model development procedure along with the system specifications are dis-

cussed in detail. This is followed up by experimental validation of the derived model using

two popular nonlinear control techniques - Sliding Mode Control and Backstepping. We

presented rigorous experimentation results for both, individual joint motion and combined

joint motion. The two control strategies are compared in terms of Root Mean Square Error

and Mean Control Effort.
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Chapter 5

Development of a Nonsingular

Fast Terminal Sliding Mode

Controller for Computed Torque

Control

5.1 Introduction

In this chapter, we develop a Nonsingular Fast Terminal Sliding Mode Control (NFTSMC)

technique for control of the 4 DOF Barrett WAM, using the model developed in Chapter

4. We begin by providing the motivation behind using a Terminal Sliding Mode Controller

(TSMC) for robotic manipulators, and a background survey of existing TSMC techniques.

We then develop a NFTSMC and analyse its finite time convergence. We establish ana-

lytically that under some simplifying assumptions, the NFTSMC technique ensures faster

convergence as compared to the standard Nonsingular Terminal Sliding Mode Controller

existing in literature. Simulation results on a simple 2nd order model are presented to

illustrate the main ideas. We extend this scheme to trajectory tracking applications for

robotic manipulators. Finally, detailed experimental results are presented to validate the

control technique. Figure 5.1 shows the 4 DOF Barrett WAM available in our lab - Intel-

ligent Systems Lab (ISL).
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Figure 5.1: The 4 DOF Barrett WAM robot

5.2 Background

Although conventional SMC has been widely explored in a variety of uncertain systems

owing to its strong robustness feature, the linear switching manifolds used in SMC lead

to asymptotic stability only. This means that the system trajectories will converge to

the equilibrium as time goes to infinity. The concept of Terminal Sliding Mode Control

(TSMC) was introduced in [90], [87] to overcome this drawback and guarantee finite-time

convergence to the equilibrium. With TSMC, the convergence rate grows exponentially as

the state approaches the equilibrium. This is the key feature which distinguishes TSMC

from SMC and ensures finite-time convergence while retaining the basic robustness fea-

tures of SMC. This forms the motivation behind using TSMC for tracking applications in

robotics, where fast convergence to the equilibrium is highly desirable. We first discuss

the development of TSMC over the years, to its most present form.
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For this purpose, let us consider a 2nd-order nonlinear dynamical system as follows

ẋ1 = x2

ẋ2 = f(x) + g(x)u + d (5.2.1)

Here x = [x1, x2]
T represents the system state vector, f(x) and g(x) 6= 0 are smooth

nonlinear functions of x, d represents uncertainties and disturbances which satisfy ||d|| < ζ

and u is the control input.

5.2.1 Conventional TSMC and Fast TSMC

For this system, the conventional TSM, as developed in [87], is given by the following

first-order sliding variable

s = x2 + βx
q

p

1 = 0, (5.2.2)

where β > 0 is a design parameter and p, q are positive odd integers such that p > q. Once

the states reach the sliding surface, i.e when s = 0, the time taken by x1 to converge to

zero is given by

ts =
p

β(p − q) |x1(tr)|
p−q
p (5.2.3)

Here, x1(tr) is the value of the state x1 at the end of the reaching phase, i.e. when the

sliding phase starts (s becomes 0). Although the states converge to zero in finite time, the

main problem with this method was that the TSM control law given by

u = −g−1(x)

(

f(x) + β
q

p
x1

q

p
−1x2 + (ζ + η)sgn(s)

)

(5.2.4)

suffered from the problem of a singularity. Specifically, the term x1
q

p
−1x2 in ( 5.2.4), could

lead to a singularity if x2 6= 0 and x1 = 0. This follows directly from the fact that p > q.

The term η in ( 5.2.4) is a positive gain constant.

It should be noted that compared to the conventional sliding mode scheme, TSM

may not offer the same rate of convergence when the system states are far off from the

equilibrium point. To overcome this problem, Yu and Man [86], [88] proposed a fast

terminal sliding mode (FTSM) scheme where the sliding variable was defined by

s = x2 + αx1 + βx
q

p

1 = 0 (5.2.5)

Here, α, β are positive design constants. However, the control law associated with the

FTSM suffered from the same singularity problem.
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5.2.2 Nonsingular TSMC

To overcome the problem of singularity in the control input, a few methods have been

proposed over the years. Some indirect approaches to avoid the singularity were discussed

in [91] and [77]. Feng et al. developed the concept of Nonsingular TSM (NTSM) in [24].

The NTSM model is defined by the following sliding variable

s = x1 +
1

β
x

p

q

2 = 0 (5.2.6)

β, p and q have been defined earlier. It was shown that with 1 < p
q
< 2, the states x1 and

x2 would converge to zero in finite time and the control law would be free of singularities.

This NTSM technique has since then been widely used by several researchers in a variety

of applications.

Remark - Expressions ( 5.2.2), ( 5.2.5) and ( 5.2.6) all suffer from a common defect.

They contain terms of the type x
q
p . For x < 0 , the fractional power q

p
may lead to the

term x
q

p /∈ ℜ. For this reason, S.Yu et al. [85] modified the NTSM to have the following

form

s = x1 +
1

β
|x2|

p

q sign(x2) = 0 (5.2.7)

Although the TSM function ( 5.2.7) contains absolute value and signum operators, it is

continuous and differentiable. This has been established in [85]. Its first derivative can be

expressed as

ṡ = ẋ1 +
1

β

p

q
|x2|

p

q
−1ẋ2 (5.2.8)

Notation - Throughout the remainder of this chapter we shall use sig
p

q (x) = |x|
p

q sign(x),

where x ∈ ℜ. For a vector x = [x1, · · · , xn]T , the notation sig
p

q (x) represents the vector

sig
p

q (x) = [sig
p

q (x1), · · · , sig
p

q (xn)]
T .

5.3 Nonsingular Fast TSMC

Very recently, the concept of Nonsingular Fast TSMC was established by Yang and Yang

in [80] . They proposed the following general structure of the NFTSM model

s = x+ k1sig
a1(x) + k2sig

a2(ẋ) = 0, (5.3.1)

where k1, k2 > 0, 1 < a2 < 2, and a1 > a2. The NFTSM concept draws from the idea

of the FTSM and ensures a high convergence rate when the state x is both near and far

from the equilibrium point. It also ensures a control law which is free of singularities. The
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settling time, ts, is in the form of a Gauss’ Hypergeometric function which is convergent

if the parameters k1, k2, a1 and a2 are chosen in a way as has been described earlier.

Inspired by ( 5.2.7) and ( 5.3.1), for the system described by ( 5.2.1), we use the

following structure for the sliding variable

s = x1 + αsig
p

q (x1) +
1

β
sig

p

q (x2) = 0, (5.3.2)

where α and β are design parameters.

Note - Unlike ( 5.3.1), in the sliding variable proposed by us, a1 = a2 =
p
q
. The choice

of this sliding variable will be justified through simulations and experimental results on the

Barrett WAM. First, we investigate the finite time convergence of the proposed NFTSM.

A simplifying assumption that leads to a constraint on the design parameter α will help

us analyse the time of convergence and obtain an approximate expression for the settling

time ts.

5.3.1 Analysis of Time of Convergence

In this section, we analyse the time of convergence of the state x1. Once the states reach

the sliding surface s = 0, we obtain the following nonlinear differential equation

ẋ1 = −β
q
p sig

q
p (x1 + αx

p

q

1 ) (5.3.3)

Proposition - Let the state x1 be bounded with a known bound ρ such that |x1| < ρ.

Let the following constraints be imposed

α =
1

ρ
p

q
−1

(5.3.4)

and 1 < p
q
< 2.

Under these constraints, starting from any initial non-zero state x1(0), the time of

convergence required using the NFTSM model described in ( 5.3.2), is always lesser than

the time of convergence using the standard NTSM model given by ( 5.2.6).

Proof. From ( 5.3.3), we find that the settling time required for the NFTSM model is

given by

ts =

∫ |x1(0)|

0

dx1

β
q

p

(

x1 + αx
p

q

1

)

q
p

(5.3.5)
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Using a binomial series expansion, we obtain

1
(

x1 + αx
p

q

1

)
q

p

= x1
− q

p

(

1 + αx1
p

q
−1
)− q

p

= x1
− q

p



1 +

∞
∑

n=1





m

n



 (αx
p

q
−1

1 )n



 , (5.3.6)

wherem = − q
p
and





m

n



 = m(m−1)···(m−(n−1))
n! . Substituting ( 5.3.6) in ( 5.3.5), we obtain

ts =
1

β
q

p

∫ |x1(0)|

0



x
− q

p

1 +
∞
∑

n=1





m

n



αnx
np

q
−n− q

p

1



 dx1 (5.3.7)

Performing the integration, we obtain

ts = t1 + t2 (5.3.8)

where

t1 =
1

β
q

p

|x1(0)|1−
q

p

(1− q
p
)

(5.3.9)

and

t2 =
1

β
q

p

∞
∑

n=1





m

n





αn|x1(0)|
np

q
− q

p
−n+1

(np
q
− q

p
− n+ 1)

(5.3.10)

To show that t2 converges, we use the Ratio test for convergence of infinite series. Let an

represent the n-th term of the infinite series given by ( 5.3.10). Then, we have

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

( q
p
+ n− 1)

(n+ 1)

∣

∣

∣

∣

∣

∣

∣

∣α|x1(0)|
p

q
−1
∣

∣

∣

∣

∣

∣

∣

∣

(np
q
− q

p
− n+ 1)

(np
q
+ p

q
− q

p
− n)

∣

∣

∣

∣

∣

(5.3.11)

Using the constraint ( 5.3.4) and taking limits on both sides of ( 5.3.11), we obtain

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=
∣

∣

∣
α|x1(0)|

p

q
−1
∣

∣

∣
=

( |x1(0)|
ρ

)
p

q
−1

< 1 (5.3.12)

Thus, from the Ratio test, we can conclude that t2 converges. As 1
2 <

q
p
< 1, we have

0 < n− 1

2
<
q

p
+ n− 1 < n < n+ 1 (5.3.13)

Thus,

∣

∣

∣

∣

( q
p
+n−1)

(n+1)

∣

∣

∣

∣

< 1. Also,

∣

∣

∣

∣

(np

q
− q

p
−n+1)

(np

q
+ p

q
− q

p
−n)

∣

∣

∣

∣

< 1 follows directly from the fact that p
q
> 1. We

have already established that
∣

∣

∣
α|x1(0)|

p

q
−1
∣

∣

∣
< 1. Based on these results, we can conclude

that for the infinite series given by ( 5.3.10),

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1 (5.3.14)
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It can be seen that in the expression for t2, a1 < 0 and consecutive terms are of opposite

signs. The infinite series can be broken up into pairs of consecutive terms where each pair

consists of one positive term and one negative term. The first such pair would consist of

a1 and a2 with a1 < 0 and a2 > 0. Since |a2| < |a1| (based on the result ( 5.3.14)), we

have the sum of the first pair a1 + a2 < 0. The same logic can be extended to show that

the sum of the infinite series, that is, t2 < 0. Thus, using ( 5.3.8), we obtain

ts < t1 (5.3.15)

The term t1 is exactly the settling time taken for the NTSM model given by ( 5.2.7).

Thus, we obtain the desired result. This completes the proof.

Remark - The assumption which we make about the state x1 being bounded, with a

priori knowledge of its upper bound, is a reasonable assumption for robotic systems where

the position states remain bounded in a tracking or regulation application. x1, as we will

see later on, will represent the tracking error in position. If a control scheme is developed

such that it ensures that the tracking error converges to zero asymptotically, then the

assumption which we make makes complete sense.

To gain more insight, we perform a comparative study of the times of convergence of

the NFTSM model and the NTSM model. We start with different initial conditions and

compare the settling times of the two techniques. Also, the accuracy of the expression

derived for the settling time, for the NFTSM method, is checked. For this purpose, we

choose upto 3 terms in the expression for t2 given by ( 5.3.10). For this simulation study,

p = 5, q = 3, β = 5 and α = 1

|x1(0)|
p
q −1

. When the state x1 settles within a tolerance band

of 10−6, we stop the simulation.

From Tables 5.1 and 5.2, we clearly see that the NFTSM has a lower settling time.

This is in accordance with the theory presented earlier. Also, it is seen that the formula

for t2, when truncated to 3 terms, gives a slightly higher estimation of the settling time

ts. With higher number of terms, a more accurate result is obviously expected.

5.4 Control Synthesis and Stability Analysis

In this section, we develop the Nonsingular Fast Terminal Sliding Mode Controller for the

system described by ( 5.2.1), and analyse the stability of the system when subjected to

this control using Lyapunov theory.
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Table 5.1: Comparison of convergence times of NTSM and NFTSM

x1(0) NFTSM settling time (in secs) NTSM settling time (in secs)

Formula Actual

5 1.605 1.529 1.813

7.5 1.887 1.799 2.129

10 2.118 2.1019 2.385

-2 1.112 1.060 1.258

-4 1.468 1.399 1.649

-8 1.937 1.845 2.182

Theorem 5.4.1. For system ( 5.2.1), with the NFTSM given by ( 5.3.2), if the control

is designed as

u = −g−1(x)

(

f(x) + β
q

p
sig

2− p

q (x2)(α
p

q
|x1|

p

q
−1

+ 1) + (k + ζ)sgn(s)

)

, (5.4.1)

where 1 < p
q
< 2, k > 0, then the NFTSM manifold ( 5.3.2) will be reached in finite time.

Also, the states x1 and x2 will converge to zero in finite time.

Proof. Let us choose the following Lyapunov candidate

V =
1

2
s2 (5.4.2)

Using ( 5.3.2), and taking the derivative of s along the system dynamics (5.2.1), we get

ṡ = ẋ1 +
1

β

p

q
|x2|

p

q
−1
ẋ2 + α

p

q
|x1|

p

q
−1
ẋ1

= x2 +
1

β

p

q
|x2|

p
q
−1

(f(x) + g(x)u + d) + α
p

q
|x1|

p
q
−1
x2

=
1

β

p

q
|x2|

p

q
−1 (d− (k + ζ)sgn(s)) (5.4.3)

Thus,

V̇ = sṡ

=
1

β

p

q
|x2|

p

q
−1 (ds− (k + ζ)|s|)

≤ −k
β

p

q
|x2|

p

q
−1|s| (5.4.4)

Let us define ρ(x2) =
k
β
p
q
|x2|

p

q
−1

. Since k, β, p and q are all positive by definition, we have

ρ(x2) > 0 for x2 6= 0. Thus, sṡ ≤ −ρ(x2)|s| with ρ(x2) > 0 for x2 6= 0. Thus, for the

situation when x2 6= 0, the Lyapunov stability condition is satisfied. This ensures that the
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Table 5.2: Comparison of time of convergence of NTSM with NFTSM. The dashed line

represents the response of the NTSM model and the bold line represents the response of

the NFTSM model.

system states will reach the sliding mode s = 0 in finite time. Next, let us analyse the case

when x2 = 0. By substituting the control ( 5.4.1) into the second equation of ( 5.2.1), we

get

ẋ2 = d− β q
p
sig2−

p

q (x2)(α
p

q
|x1|

p

q
−1 + 1)− (k + ζ)sgn(s) (5.4.5)

Thus, for x2 = 0, we get

ẋ2 = d− (k + ζ)sgn(s) (5.4.6)

Thus, we see that ẋ2 < −k and ẋ2 > k for s > 0 and s < 0, respectively. From the logic

presented in [24], it is apparent that (x1 6= 0 and x2 = 0) is not a terminal attractor and

that the sliding mode s = 0 can be reached from anywhere in the phase plane in finite

time. This completes the proof.
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Remark - It should be noted that in the control law given by ( 5.4.1), none of the

terms have negative fractional powers. Thus, the possibility of a singularity is eliminated

with this design. This follows directly from the fact that 1 < p
q
< 2.

5.4.1 A Simulation study for a 2nd-order system

To test the performance of the NFTSMC, we consider the following 2nd-order nonlinear

dynamical system [24] -

ẋ1 = x2

ẋ2 = 0.1 sin(20t) + u (5.4.7)

The control parameters are chosen as follows : β = 5, α = 0.63, p = 5 and q = 3.

We use the boundary layer concept for minimizing the chattering effect. Thus sgn(s) is

approximated by s
(|s|+ǫ) . The width of the boundary layer, ǫ, is chosen to be 0.01. The

initial condition for the simulation is [x1(0), x2(0)] = [−0.05, 1].
Based on the parameters defined earlier, the sliding surface is given by

s = s = x1 + 0.63sig
5

3 (x1) + 0.2sig
5

3 (x2) = 0 (5.4.8)

The control law is obtained by using equation ( 5.4.1).

From Table 5.3, we can see that the states indeed converge to zero in finite time. The

control effort does not become unbounded, i.e. there is no singularity in the control effort.

The chattering in the control can be further reduced by increasing the boundary layer

width.

It is interesting to note that even though the states converge to zero in finite time, the

control effort u does not vanish at steady state. This is because of the 0.1 sin(20t) term

in the second part of equation ( 5.4.7). To balance the effect of this term, at steady state,

u = −0.1 sin(20t).
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Table 5.3: Details of the Simulation Study on the 2nd-order model

5.5 Nonsingular Fast Terminal Sliding Mode Controller for

the 4 DOF WAM

For the control design, we use the state space representation which has already been derived

from the dynamics of the WAM in Chapter 4. We reproduce it here for convenience

ẋ = z

ż = f(x, z) + g(x)u + d, (5.5.1)
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where

x , [q1, q2, q3, q4]
T

z , [q̇1, q̇2, q̇3, q̇4]
T

f(x, z) , −M−1(C+G)

g(x) , M−1

u , τ

We work with the assumptions that

• ||M−1(q)|| = ||g(x)|| ≤ ρ, where ρ is a known bounded positive constant.

• The disturbance vector d = [d1, d2, d3, d4]
T is bounded, i.e ||d|| ≤ γ, where γ is the

known bound on the disturbance.

Let the tracking error be defined by e , x− xd. A sliding surface S is chosen according

to the NFTSM concept and it is given by

S = e+Asig
p

q (e) +Bsig
p

q (ė), (5.5.2)

where A = diag(α1, α2, α3, α4) and B = diag( 1
β1
, 1
β2
, 1
β3
, 1
β4
) are the design matrices. The

entries of A and B are all positive. p and q are positive odd integers satisfying 1 < p
q
< 2.

In light of the analysis performed previously on the convergence time of the NFTSM

model, the gain αi is chosen to satisfy

αi =
1

(max |ei|)
p

q
−1

The objective is to design u in such a way that S is driven to zero.

Theorem 5.5.1. For the state space model of the Barrett WAM represented by ( 5.5.1),

if the NFTSM manifold is chosen as ( 5.5.2), and the NFTSM control is designed as

u = Mẍd +C+G−MB−1

(

q

p
I4 +AΛ2

)

sig2−
p

q (ė)−M(K+ ργI4)
S

||S|| , (5.5.3)

where xd is the reference trajectory, I4 is the identity matrix of dimension 4 , Λ2 is a

diagonal matrix with Λ2(i, i) = |ei|
p

q
−1 and K is the diagonal gain matrix with ki > 0,

then fast finite time convergence to S = 0 is ensured, and the states x and z also converge

to zero in finite time.

Proof. Let us consider the following Lyapunov function

V =
1

2
STS (5.5.4)
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The derivative of the NFTSM manifold S ( 5.5.2), along the system dynamics ( 5.5.1),

gives

Ṡ = ė+
p

q
AΛ2ė+

p

q
BΛ1ë

=

(

I4 +
p

q
AΛ2

)

ė+
p

q
BΛ1 (f + gu+ gd− q̈r)

=
p

q
BΛ1

(

gd− (K+ ργI4)
S

||S||

)

(5.5.5)

In the above equations Λ1 is a diagonal matrix with Λ1(i, i) = |ėi|
p

q
−1

. Using ( 5.5.5), the

derivative of V becomes

V̇ = STṠ

= ST p

q
BΛ1

(

gd− (K+ ργI4)
S

||S||

)

≤ − min
i=1,2,3,4

(
ki
βi
|ėi|

p

q
−1

)
p

q
||S|| (5.5.6)

Let us define

ψ(ė) = min
i=1,2,3,4

(
ki
βi
|ėi|

p

q
−1)
√
2
p

q
(5.5.7)

Thus, from ( 5.5.6), we get

V̇ ≤ −ψV 1

2 (5.5.8)

We use the Comparison Lemma [30], and follow the same line of argument as in Theorem

5.4.1, to conclude that the sliding manifold S = 0 will be reached in finite time. This in

turn ensures that the states x and z will converge to zero in finite time.

5.6 Simulation and Experimental results

In this section, we present a comparative study of simulation and experimentation per-

formed on the Barrett WAM, using the NFTSMC scheme developed in the previous sec-

tion. We start with individual joint tracking experiments. This concept has already been

explained in Chapter 4. Each joint is given a sinusoidal trajectory to track at various

angular frequencies, while the movements of the other joints are constrained. The initial

conditions for testing the joints are as follows

• For Joint 1: [θ10, θ20, θ30, θ40] = [0,−π
2 , 0, π]

• For Joint 2: [θ10, θ20, θ30, θ40] = [0, 0, 0, π]

• For Joint 3: [θ10, θ20, θ30, θ40] = [0,−π
2 , 0,

π
2 ]
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Table 5.4: Comparison of Simulation and Experimental Data

Simulation Data Experimental Data

Frequency
RMSE (in mrad) Mean Control Input (in N-m) RMSE (in mrad) Mean Control Input (in N-m)

(rad/s) Jnt.1 Jnt.2 Jnt.3 Jnt.4 Jnt.1 Jnt.2 Jnt.3 Jnt.4 Jnt.1 Jnt.2 Jnt.3 Jnt.4 Jnt.1 Jnt.2 Jnt.3 Jnt.4

0.6 1.62 0.37 3.15 2.40 0.19 0.19 0.02 0.01 9.6 13.5 8.7 6.5 2.72 3.48 2.46 1.19

0.8 2.81 0.45 5.98 4.60 0.31 0.21 0.03 0.02 10.9 15.0 10.0 7.9 2.87 3.69 2.65 1.27

1 4.63 0.65 5.03 7.68 0.45 0.31 0.04 0.03 12.6 16.3 11.5 9.9 2.99 3.85 2.79 1.37

1.2 5.65 0.79 3.95 1.55 0.61 0.47 0.06 0.05 14.8 18.3 13.4 11.3 3.19 4.01 2.91 1.41

• For Joint 4: [θ10, θ20, θ30, θ40] = [0,−π
2 , 0,

π
2 ]

The amplitude of oscillation is set to 1 for all trials. The gain matrix K is set to

diag(10, 10, 10, 10) and the design matricesA andB are set to diag(5, 5, 5, 5) and diag(0.2, 0.2, 0.2, 0.2)

respectively, for both simulations and experiments. The boundary layer width is chosen

to be ǫ = 0.01 for simulations. This parameter requires tuning for the experiments. A

lower value of ǫ yields better accuracy at the cost of higher chattering. For experiments

on the first 3 joints, ǫ has been set to 0.03. For Joint 4, its value is 0.05. Simulations have

been carried out assuming d = 0 i.e. there are no disturbances to the system.

Note - Since the Barrett WAM has an internal gravity compensation module, the values

of Torques (control efforts) presented, do not include the gravity compensation term. To

make the simulation study more realistic, we exclude the gravity compensation term for

simulations as well.

5.6.1 Discussion of Results

• Table 5.5 shows the trajectory plots for the various joints and the corresponding

control efforts at ω = 1rad/s. From the plots of the trajectories, it is observed

that the NFTSMC technique ensures excellent tracking in both simulations and

experiments.

• From Table 5.5, we find that in the simulations, a nominal control effort only is

required for the tracking. This is mainly because there are no model uncertain-

ties/disturbances to be accounted for. Also, the gravity compensation term has

been excluded. The remaining effort required for sinusoidal motion is observed to

be nominal in the simulations.

74



CHAPTER 5. DEVELOPMENT OF A NONSINGULAR FAST TERMINAL SLIDING
MODE CONTROLLER FOR COMPUTED TORQUE CONTROL 75

0 1 2 3 4 5 6 7 8 9
−1.5

−1

−0.5

0

0.5

1

t (in secs)

Jo
in

t a
ng

le
 1

 (
in

 r
ad

)

 

 

Reference
Experiment
Simulation

0 1 2 3 4 5 6 7 8 9
−1

−0.5

0

0.5

1

1.5

t (in secs)

Jo
in

t a
ng

le
 2

 (
in

 r
ad

)

 

 

Reference
Experiment
Simulation

Joint 1 Trajectory Joint 2 Trajectory

0 1 2 3 4 5 6 7 8 9
−1.5

−1

−0.5

0

0.5

1

t (in secs)

Jo
in

t a
ng

le
 3

 (
in

 r
ad

)

 

 

Reference
Experiment
Simulation

0 1 2 3 4 5 6 7 8 9
0.5

1

1.5

2

2.5

3

t (in secs)

Jo
in

t a
ng

le
 4

 (
in

 r
ad

)

 

 

Reference
Experiment
Simulation

Joint 3 Trajectory Joint 4 Trajectory

0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

12

t (in secs)

Jo
in

t t
or

qu
e 

1 
(in

 N
−m

)

 

 

Experiment
Simulation

0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

12

t (in secs)

Jo
in

t t
or

qu
e 

2 
(in

 N
−m

)

 

 

Experiment
Simulation

Joint 1 Control Joint 2 Control

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

t (in secs)

Jo
in

t t
or

qu
e 

3 
(in

 N
−m

)

 

 
Experiment
Simulation

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

t (in secs)

Jo
in

t t
or

qu
e 

4 
(in

 N
−m

)

 

 

Experiment
Simulation

Joint 3 Control Joint 4 Control

Table 5.5: Details of Simulation and Experimentation on Individual Joint Trajectory

Tracking at ω = 1 rad/s.
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• The difference between a simulation environment and a real experimental platform

is clearly reflected by the difference in control efforts between the corresponding

values of simulation and experimental torques. The extra torque required during

experiments helps overcome friction and other unmodeled dynamic terms. Thus,

one can think of the difference between the corresponding values of simulation and

experimental torques to represent the disturbances of the system. It is apparent that

the disturbance is not constant, but rather a function of the angular position of the

joints.

• Table 5.4 tabulates the Root Mean Square Errors (RMSE) and Mean Control Efforts

for all the joints, for different angular frequencies, and gives a quantitative idea of the

differences existing between simulations and experiments. As expected, the RMSE

is lesser for simulations and so is the required control effort.

• From Table 5.4, one can observe that both the RMSE and the Mean Control Effort

increase at higher frequencies of operation.

Next, we perform a combined joint motion testing. The initial positions and reference

trajectories are exactly the same as the ones used for the combined motion testing in

Chapter 4. The only difference is the angular frequency of testing. In Chapter 4, the

results were reported for ω = 0.8rad/s. Here, the experiments have been performed

for ω = 1rad/s. Table 5.6 shows the results for this experiment. Clearly, the tracking is

performed very accurately. A YouTube video which illustrates our experiments is available

here [link] [3]. A repository of codes relevant to the modeling and control of the WAM is

being stored here [link] [1]. It contains the Maple code for deriving the model, Matlab codes

for testing the control actions in simulations, and C++ codes for actual experimentation.
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Table 5.6: Details of Experimentation on Combined Joint Trajectory Tracking at ω = 1

rad/s.
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5.7 Summary

In this chapter, we have presented a Nonsingular Fast Terminal Sliding Mode Control

(NFTSMC) scheme for control of the 4 DOF Barrett WAM. An analytical expression is

derived for the error settling time. We have proved that the time of convergence of the

proposed scheme is lesser than that of a standard Nonsingular Terminal Sliding Mode

Control (NTSMC) scheme which exists in literature. Simulations on simple systems are

presented to illustrate the main ideas. This is followed by detailed simulation and ex-

perimental results performed on the WAM. The tracking results are found to be very

promising. Thus, we have established the feasibility of the NFTSMC scheme for control

of the WAM robot.
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Chapter 6

Continuous-Time Single Network

Adaptive Critic Based Optimal

Sliding Mode Control for

Nonlinear systems

6.1 Introduction

Integrating the Sliding Mode Control (SMC) theory with Approximate Dynamic Program-

ming (ADP), this chapter presents a novel technique for designing robust optimal sliding

mode control schemes for a class of nonlinear control affine systems with disturbances. The

main motivation of the work is to merge the inherent robustness of conventional sliding

mode control with optimal control theory. Towards this end, a dynamic sliding surface is

first used and a control law is defined which guarantees stability in the sense of Lyapunov

in the presence of the disturbances. Next, a continuous time single network adaptive critic

is used to find an approximate solution to the Hamilton-Jacobi-Bellman (HJB) equation.

Since the adaptive critic approximates the optimal cost-to-go function using a parametric

positive semi-definite function, the stability of the system is studied during the evolution

of weights by employing Lyapunov theory. The merits of the proposed algorithm are

demonstrated through simulation examples.
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6.2 Background

Sliding Mode Control (SMC) is one of the most effective nonlinear robust control tech-

niques as it makes the system dynamics insensitive to matched disturbances once the

system states reach the sliding surface [12, 63, 70, 83] . Usually, stability is the main con-

sideration governing the design of conventional SMC. They are accordingly developed to

account for the worst case scenarios when system uncertainties and external disturbances

are dominant. However, a majority of real physical processes are well known to us, and

hence can be modeled by a dominant nominal part with relatively small uncertainties. For

such cases, stability and convergence are not the only issues to be addressed. Optimal-

ity issues need to be taken into consideration, which minimize the input energy so as to

preclude the possibilities of impracticable control designs.

While optimal control theory provides the methodology to design controllers which

are optimal with respect to a defined performance index, the main limitation of such

techniques is their sensibility to system uncertainties. This necessitates the requirement

of complete system knowledge, which might prove to be difficult in several cases. As SMC

is insensitive to uncertainties and external disturbances, combining SMC with optimal

control theory can lead to a potential solution to this problem. Such a combination can

lead to optimal or sub-optimal control schemes which are more robust. In [84], Young

et al. have used the Linear Quadratic (LQ) approach for designing the optimal sliding

mode. In [82], Young and Ozguner use co-states of the plant for constructing sliding

manifolds, yielding a robust control design for solving linear optimal control problems with

fixed terminal time and fixed terminal constraints. In [40], Koshkouei and Zinober have

studied frequency shaping linked with linear quadratic optimal control and sliding mode

control. However, their method is applicable to only linear time-invariant systems, and

the quadratic cost function has only the states as its arguments and does not consider the

control input. In [79], Xu and Ozguner incorporated the control effort into the quadratic

cost function and presented an optimal sliding mode control approach for linear systems.

While most of the existing literature in optimal sliding mode control is dedicated to

linear systems, some recent works have addressed the problem for nonlinear systems as

well [22, 60]. In [78], Xu and Ozguner have used three different methods, the Hamilton-

Jacobi-Bellman (HJB) equation approach, the Control Lyapunov function approach and

the State Dependent Riccati equation approach (SDRE), namely, for finding the optimal

sliding mode solution for a class of nonlinear control affine systems. This chapter focuses

on the use of Approximate Dynamic Programming for designing optimal sliding mode

80



CHAPTER 6. CONTINUOUS-TIME SINGLE NETWORK ADAPTIVE CRITIC
BASED OPTIMAL SLIDING MODE CONTROL FOR NONLINEAR SYSTEMS 81

controllers.

For a dynamical system with a corresponding performance index, there are two main

techniques for solving the associated optimal control problem. They are Pontryagin’s min-

imum principle and Bellman’s dynamic programming [15,53]. The continuous time version

of Bellman’s recurrence equation in dynamic programming is called the Hamilton-Jacobi-

Bellman equation, which is a necessary as well as sufficient condition for optimality [15,53].

However, the HJB equation becomes very difficult to solve analytically for even moder-

ately complex systems. To overcome this difficulty, Approximate Dynamic Programming

was introduced by Werbos [75]. The ADP formulation leads to the Adaptive Critic ar-

chitectures which consist of two parametric structures - an actor network which computes

a parametrized control law and a critic network which provides guidance on how to up-

date the control law. In [59], Padhi et al. proposed an architecture known as the Single

Network Adaptive Critic (SNAC) which simplifies the standard adaptive critic framework

by getting rid of the actor network for a class of systems where the control input can be

expressed explicitly in terms of state and costate variables. Quite recently, Kumar, Padhi

and Behera [42] introduced a continuous-time version of the SNAC architecture which

approximates the optimal cost function using a parametric positive semi-definite function

and derives a continuous-time weight update law so as to satisfy the HJB equation.

In this chapter, we integrate the continuous time SNAC design with SMC so as to

obtain a novel methodology for designing robust optimal sliding mode controllers for a class

of nonlinear control affine systems. First, we define the problem at hand and develop a

sliding mode controller which guarantees robustness of the system to external disturbances.

Next, we use the continuous time SNAC for finding an approximate solution to the HJB

equation for a reformulated version of the nominal system without the disturbances. A

detailed stability analysis of the entire framework is next presented, which establishes

asymptotic stability of the system in the sense of Lyapunov. This is followed up by a

summary of the steps to be followed to design controllers based on the proposed algorithm.

As motivating examples to demonstrate the merits of the proposed scheme, two simulation

studies are presented considering first order and second order nonlinear systems. These

are regulation problems. Comparisons are drawn with the conventional SMC and HJB

based solutions. Next, we extend the developed theory to a trajectory tracking setting.

The proposed technique is applied to a simplified model of the MRI guided micro-robot

system which was discussed in Chapters 2 and 3. Simulation results are presented.
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6.3 Control Strategy

6.3.1 Problem Statement

Let us consider a class of nonlinear systems described by

ẋi = xi+1, i = 1, ...., n − 1

ẋn = f(x) + u+ ζ (6.3.1)

where x = [x1, ..., xn]
T is the state vector, f is a smooth function such that f(0) = 0

and ζ is a bounded, non-vanishing , exogenous disturbance. The task is to design a control

input which minimizes the performance index

J =

∫ ∞

0
[L(x) + u2] dt. (6.3.2)

where L(x) ≥ 0 is a positive semi-definite function of the state x.

6.3.2 Sliding Mode Control Design

The motivation behind using sliding mode control for the system given by ( 6.3.1) is

to obtain robustness against the exogenous disturbance ζ around the equilibrium. This

design has been taken up in [2] and we reproduce it here for completeness. An integral

sliding mode control design is chosen over the conventional sliding mode control technique,

as it adds an extra degree of freedom in designing the controller. A switching function is

defined as

s = c1x1 + c2x2 + · · ·+ cn−1xn−1 + xn + φ (6.3.3)

where ci
′s are constant parameters, φ is a smooth function to be defined later, and the

continuous approximated sliding mode control is given by

u = −c1x2 − c2x3 − · · · − cn−1xn − f − φ̇−Mσǫ(s) (6.3.4)

where M >max|ζ|, and σǫ(·) is a saturation function defined as

σǫ(s) =



























1 if s > ǫ;

s
ǫ

if |s| ≤ ǫ;

−1 if s < −ǫ.

(6.3.5)

where ǫ is a small positive constant.
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Theorem 6.3.1. The sliding mode control ( 6.3.4) will drive and restrict the system

( 6.3.1) within a boundary layer Ω = {s||s| < ǫ} from t = 0 even in the presence of the

disturbance ζ, if we enforce s(0) = 0 by choosing φ(0) = −
n−1
∑

i=1
cixi(0) − xn(0).

Proof. Let us consider a Lyapunov function candidate

V =
1

2
s2 (6.3.6)

Its derivative with respect to time is given by

V̇ = sṡ

= s(ζ − M

ǫ
s)

= sζ − M

ǫ
s2 (6.3.7)

On the boundary of Ω, s = |ǫ|. Hence, from ( 6.3.7) we have

V̇ = sζ − M

ǫ
ǫ2

= ǫ(|ζ| −M)

< 0

Therefore, the sliding mode control design renders the boundary layer Ω an invariant set

of the closed-loop system ( 6.3.1). Thus, by enforcing s(0) = 0 ∈ Ω, the evolution of

the closed-loop system will be confined to the boundary layer Ω from t = 0, even in the

presence of the exogenous disturbance ζ.

Since s always stays within the boundary layer, that is, as |s| ≤ ǫ, the control input to
the system becomes

u = −c1x2 − c2x3 − · · · − cn−1xn − f − φ̇−
M

ǫ
s (6.3.8)

The control law ( 6.3.8) guarantees stability of the system in the sense of Lyapunov in

the presence of the disturbances. The next task is to design an update law for φ which

minimizes the cost function ( 6.3.2). For this, we consider the nominal system without

the disturbances. By denoting xn+1 = φ, v = φ̇ and η = M
ǫ
, we reformulate the dynamics

of ( 6.3.1) as

ẋ1 = x2

... (6.3.9)

ẋn−1 = xn

ẋn = −ηc1x1 −
n−1
∑

i=1

(ci + ηci+1)xi+1 − ηxn+1 − v

ẋn+1 = v
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where cn = 1.

6.3.3 Continuous Time Single Network Adaptive Critic based Optimal

Sliding Mode Control Design

The dynamics of the system ( 6.3.9) can be expressed in the control-affine form

˙̄x = F(x̄) +G(x̄)v (6.3.10)

where x̄ represents the augmented state vector such that x̄ = [x1, ..., xn, xn+1]
T and

F(x̄) =



















x2
...

−ηc1x1 −
n−1
∑

i=1
(ci + ηci+1)xi+1 − ηxn+1

0



















,G(x̄) =























0
...

0

−1
1























(6.3.11)

v represents the input to the system ( 6.3.10) and the performance index ( 6.3.2) can be

written as

J(x̄(0), 0) =

∫ ∞

0
[L+ f̄2 + 2f̄v + v2] dt. (6.3.12)

where

f̄ = f + ηc1x1 +

n−1
∑

i=1

(ci + ηci+1)xi+1 + ηxn+1 (6.3.13)

Thus, the equivalent problem reduces to an optimal control problem for a control-affine

system with a non-quadratic cost functional. The solution to this problem would give

the optimal v∗, which can then be used to solve the original optimal sliding mode control

problem.

Let J∗(x̄∗(t), t) be a scalar function representing the optimal value of the performance

index J for an initial state x̄∗(t) at time t.

Let us define a Hamiltonian as

H(x̄,λ∗, v) = L+ f̄2 + 2f̄v + v2 + λ∗T [F(x̄) +G(x̄)v] (6.3.14)

where λ∗ = ∂J∗

∂x̄
. The optimal control v∗ is derived from the necessary condition given by

∂H

∂v
=

∂

∂v
[L+ f̄2 + 2f̄v + v2] + λ∗T ∂

∂v
[F(x̄) +G(x̄)v] = 0 (6.3.15)

This results in the following expression for the optimal control input to the system ( 6.3.10)

v∗ = −f̄ − 1

2
λ∗TG(x̄) = −f̄ − 1

2
GT (x̄)λ∗ (6.3.16)
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Substituting the value of v∗ in ( 6.3.14), we get

H(x̄∗,λ∗, v∗) = L+ f̄2 + 2f̄ [−f̄ − 1

2
GT (x̄∗)λ∗] + [f̄2 +

1

4
λ∗TG(x̄∗)GT (x̄∗)λ∗ + f̄GT (x̄∗)λ∗]

+ λ∗T (F(x̄∗) +G(x̄∗)[−f̄ − 1

2
GT (x̄∗)λ∗])

(6.3.17)

On simplification, the expression for the optimal Hamiltonian becomes

H∗ = L− 1

4
λ∗TG(x̄∗)GT (x̄∗)λ∗ + λ∗TF(x̄∗)− f̄λ∗TG(x̄∗) (6.3.18)

Now, the optimal value function J∗(x̄∗(t), t) must satisfy the Hamilton-Jacobi-Bellman

(HJB) equation given by

∂J∗

∂t
+min

u
H(x̄,

∂J∗

∂x̄
, v, t) = 0 (6.3.19)

Thus, from ( 6.3.18) and ( 6.3.19), the optimal value function must satisfy the following

nonlinear dynamic equation

∂J∗

∂t
+ L − 1

4

(

∂J∗

∂x̄

)T

G(x̄∗)GT (x̄∗)
∂J∗

∂x̄
+

(

∂J∗

∂x̄

)T

F(x̄∗) − f̄

(

∂J∗

∂x̄

)T

G(x̄∗) = 0

(6.3.20)

The above equation is extremely difficult to solve analytically. Thus, an alternate approach

is to approximate the optimal value function as follows:

V (x̄, t) = h(w, x̄) (6.3.21)

The approximating function h(w, x̄) is chosen such that it satisfies certain initial conditions

which are discussed in the next section. If h(w, x̄) represents the optimal value function,

then it has to satisfy the HJB equation ( 6.3.19). This yields

∂V

∂t
+min

u
H(x̄,

∂V

∂x̄
, v, t) = 0 (6.3.22)

From ( 6.3.20), ( 6.3.21) and ( 6.3.22), we get

∂V

∂t
+ L− 1

4

(

∂V

∂x̄

)T

GGT ∂V

∂x̄
+

(

∂V

∂x̄

)T

F− f̄
(

∂V

∂x̄

)T

G = 0 (6.3.23)

As ∂V
∂t

=
(

∂h
∂w

)T
ẇ, we get the following weight update law:

(

∂h

∂w

)T

ẇ = −L+
1

4

(

∂h

∂x̄

)T

GGT ∂h

∂x̄
−
(

∂h

∂x̄

)T

F+ f̄

(

∂h

∂x̄

)T

G (6.3.24)

However, the scalar equation ( 6.3.24) represents an under-determined system of linear

equations where the number of equations is lesser than the number of variables to be
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solved for. Out of the infinitely many solutions of this equation, we seek the minimum

norm solution, i.e the solution which minimizes ||ẇ||2. We use the Pseudo-inverse method

to compute the solution for ẇ.

Equation ( 6.3.24) can be re-written as

Sẇ = r (6.3.25)

where S =
(

∂h
∂w

)T
is a row vector and r = −L+ 1

4

(

∂h
∂x̄

)T
GGT ∂h

∂x̄
−
(

∂h
∂x̄

)T
F+ f̄

(

∂h
∂x̄

)T
G is

a scalar.

The pseudo-inverse solution to ( 6.3.25) is given by

ẇ = ST(SST)
−1
r (6.3.26)

Remark - Since (SST) is a scalar, its inverse can easily be computed.

6.4 Stability Analysis

In this section, we seek to analyse under what conditions the parametrized function h(w, x̄)

and the weight update law associated with it guarantee asymptotic stability in the sense

of Lyapunov. It is a well known concept in optimal control theory that every meaningful

value function is a Lyapunov function. Since we have chosen h(w, x̄) to approximate

the optimal value function, it serves as a suitable Lyapunov candidate for studying the

stability of the proposed scheme. Since V (x̄, t) = h(w, x̄), differentiating V (x̄, t) with

respect to time, we obtain

V̇ =
∂V

∂t
+

(

∂V

∂x̄

)T

˙̄x

=
∂V

∂t
+

(

∂V

∂x̄

)T

[F+Gv] (6.4.1)

Using ( 6.3.16), ( 6.3.23) and ( 6.4.1), we get

V̇ = −L+1

4

(

∂V

∂x̄

)T

GGT ∂V

∂x̄
−
(

∂V

∂x̄

)T

F+f̄

(

∂V

∂x̄

)T

G+

(

∂V

∂x̄

)T

(F+G[−f̄− 1

2
GT ∂V

∂x̄
])

(6.4.2)

On simplification, we get

V̇ = −L− 1

4

(

∂V

∂x̄

)T

GGT ∂V

∂x̄
(6.4.3)

Now, L is a positive semi-definite function of the states by definition. Clearly V̇ < 0

whenever x̄ 6= 0. V (x̄, t) is a function of both the states x̄ and the weights w. Let us
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impose a condition on the parametrized function h(w, x̄) that

∂V

∂x̄
(x̄, t) =

∂h

∂x̄
= 0 when x̄ = 0 (6.4.4)

Thus, V̇ = 0 when either {x̄ = 0,w = 0} and {x̄ = 0,w 6= 0}. Thus, we can conclude

that V̇ is only negative semi-definite. This ensures the boundedness of x̄,w and also of ˙̄x.

Let us impose a second condition on V (x̄, t) that it is lower bounded. Integrating V̇ with

respect to time, we get
∫ t

0
V̇ dτ = V (x̄(t), t) − V (x̄(0), 0) (6.4.5)

As V (x̄(0), 0) is bounded and V (x̄(t), t) is bounded and non-increasing, the following result

can be obtained

lim
t→+∞

∫ t

0
V̇ dτ <∞ (6.4.6)

Taking the derivative of V̇ once again with respect to time, we get

V̈ = −
(

∂L

∂x̄

)T

˙̄x− 1

2

(

∂V

∂x̄

)T

GGT ∂
2V

∂t∂x̄
− 1

4

(

∂V

∂x̄

)T ∂(GGT )

∂t

∂V

∂x̄
(6.4.7)

Now, the partial derivative ∂L
∂x̄

is a function of x̄ and the partial derivative ∂V
∂x̄

is a function

of x̄ and w. The boundedness of x̄ and w has already been established . Thus, the partial

derivatives ∂L
∂x̄

and ∂V
∂x̄

are bounded. From ( 6.3.11), we find that G is a vector of constants.

Hence the partial derivative ∂(GGT )
∂t

= 0. Thus, V̈ is bounded for all time and we can

hence conclude that V̇ is uniformly continuous in time. Based on this conclusion, the

conditions imposed on V (x̄, t) and ( 6.4.6), we can state based on Barbalat’s Lemma that

V̇ → 0 as t→∞. From ( 6.4.3), V̇ = 0 implies that

− L− 1

4

(

∂V

∂x̄

)T

GGT ∂V

∂x̄
= 0

Since both L and
(

∂V
∂x̄

)T
GGT ∂V

∂x̄
are positive scalars, the above equation leads to the

following result

L = 0 and

(

∂V

∂x̄

)T

GGT ∂V

∂x̄
= 0

Thus, we can conclude that x̄ → 0 and ∂V
∂x̄
→ 0 as t → ∞. This establishes the fact

that the approximate optimal value function ( 6.3.21) along with the weight update rule

( 6.3.24) guarantee asymptotic stability in the sense of Lyapunov.
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6.5 Design Procedure

In this section, we summarize the main steps that need to be followed to design an Optimal

Sliding Mode Controller for systems of the type ( 6.3.1) using the proposed algorithm.

1. Design the sliding surface s using the equation ( 6.3.3).

2. Based on knowledge of the system under consideration, choose the gain parameterM

to satisfy the constraint M >max|ζ|. Choose the boundary layer width ǫ. It should

be noted that a smaller value of ǫ leads to more robustness against disturbances at

the cost of higher chattering.

3. Determine F(x̄),G(x̄) and f̄ using the equations ( 6.3.11) and ( 6.3.13) respectively.

4. Choose a parametric positive semi-definite structure for the cost-to-go function

V (x̄, t) = h(w, x̄) such that it satisfies ( 6.4.4). A possible candidate for an n-th

order system of the type ( 6.3.1) is V = 1
2

(

n+1
∑

i=1
wixi

)2

+ 1
2

n+1
∑

i=1
wi

2. Here xn+1 = φ.

5. Using the parameterized cost-go-to function as defined in Step 4, compute the partial

derivatives ∂h
∂w

and ∂h
∂x̄

.

6. Using the Pseudo-inverse method, find the minimum norm solution to the equation

( 6.3.24). This gives the weight update law for the parameterized function V .

7. Derive the optimal update law v∗ for the parameter φ using the equation ( 6.3.16).

This update law minimizes the performance index ( 6.3.2).

8. Construct the control law u using equation ( 6.3.8) and the optimal update law as

obtained in step 7.

9. While implementing the control law, the initial value of φ should be chosen so as to

satisfy the constraint s(0) = 0 i.e. φ(0) = −
n−1
∑

i=1
cixi(0)− xn(0).

6.6 Simulation and Results

In this section, we consider two different non-linear dynamical systems and establish the

efficacy of the proposed Optimal Sliding Mode control scheme.

Example 1: Let us consider the following first-order system

ẋ = −x3 + u+ ζ (6.6.1)
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where ζ is the bounded exogenous disturbance. Let the performance index be

J =

∫ ∞

0

(

1

2
x2 + u2

)

dt. (6.6.2)

The task is to design a control action u which drives the state x to the origin in the

presence of the disturbance and also minimizes the cost function given by ( 6.6.2). Thus,

the problem is an optimal regulation problem and we consider three separate designs for

the same.

Design 1 : Optimal Sliding Mode Control

Let the sliding surface s be chosen as

s = x+ φ (6.6.3)

Comparing with the general formulation in ( 6.3.1) and ( 6.3.2) , we have f(x) = −x3 and

L = 1
2x

2. Using ( 6.3.8),

u = x3 − φ̇− M

ǫ
s (6.6.4)

As has been established earlier, the choice of this control law along with the constraint

that φ(0) = −x(0), ensures that system remains confined to the boundary layer from

t = 0, even in the presence of the disturbance ζ. This establishes the robustness of the

scheme. Next, we consider the nominal system (without the disturbance) and by denoting

x1 = x, x2 = φ, v = φ̇ and η = M
ǫ
, we reformulate the dynamics of ( 6.6.1) as

ẋ1 = −η(x1 + x2)− v

ẋ2 = v (6.6.5)

Thus, comparing with ( 6.3.10) and ( 6.3.11) , we have

F(x̄) =





−η(x1 + x2)

0



 ,G(x̄) =





−1
1



 (6.6.6)

where x̄ = [x1, x2]
T . Using ( 6.3.12), we have f̄ = f + η(x1 + x2) = −x13 + η(x1 + x2).

Let us choose the following structure for the optimal cost-to-go function

V =
1

2
(w1x1 + w2x2)

2 +
1

2
(w1

2 + w2
2) (6.6.7)

The weight vector w = [w1, w2]
T is updated by using the pseudo-inverse solution to the

under-determined equation ( 6.3.24), which is reproduced here for convenience

(

∂V

∂w

)T

ẇ = −L+
1

4

(

∂V

∂x̄

)T

GGT ∂V

∂x̄
−
(

∂V

∂x̄

)T

F+ f̄

(

∂V

∂x̄

)T

G (6.6.8)
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where the partial derivatives are given by

∂V

∂x̄
= [(w1x1 + w2x2)w1, (w1x1 + w2x2)w2]

T , (6.6.9)

∂V

∂w
= [(w1x1 + w2x2)x1 + w1, (w1x1 + w2x2)x2 + w2]

T (6.6.10)

The optimal control v∗ is given by ( 6.3.16), and for this problem it is computed to be

v∗ = −f̄− 1

2
GT (x̄)

∂V

∂x̄
= −x13+η(x1+x2)−

1

2
[w1(w2−w1)x1+w2(w2−w1)x2] (6.6.11)

Using ( 6.6.4) and ( 6.6.11), the optimal sliding mode control u for the system given by

( 6.6.1) is

u =
1

2
[w1(w2 − w1)x1 +w2(w2 − w1)x2] (6.6.12)

This control law along with the weight update law ( 6.6.8) completes the Optimal Sliding

Mode Control design.

Design 2 : Conventional Sliding Mode Control

Since the system under consideration is a first-order system, let us define the sliding surface

as s = x. Let a Lyapunov candidate be chosen as

V =
1

2
s2 (6.6.13)

Taking the derivative of V with respect to time, we get

V̇ = sṡ = s(−x3 + u+ ζ) (6.6.14)

Let us define u as

u = x3 − ksgn(s) (6.6.15)

where k is a positive constant such that k > max|ζ| and sgn(·) represents the signum

function. This gives

V̇ = sṡ = s(−ksgn(s) + ζ) = −k|s|+ sζ ≤ −|s|(k −max|ζ|) < 0 (6.6.16)

Thus, the control law u given by ( 6.6.15) guarantees asymptotic stability. To reduce the

chattering phenomenon existing in conventional SMC, we use the popular boundary layer

technique where the signum function is approximated by the saturation function s
(|s|+ǫ)

and ǫ is a small positive quantity representing the width of the boundary layer. This yields

the following smooth sliding mode control law

u = x3 − k s

(|s|+ ǫ)
(6.6.17)
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Design 3 : HJB based optimal control (analytical solution)

Since the dynamics of the system given by ( 6.6.1) is time invariant, the HJB equation for

this system (nominal) turns out to be

min
u

(

1

2
x2 + u2 +

∂J∗

∂x
ẋ

)

= 0 (6.6.18)

Or,

min
u

(

1

2
x2 + u2 +

∂J∗

∂x
(−x3 + u)

)

= 0 (6.6.19)

This gives the following optimal control law u∗

u∗ = −1

2

∂J∗

∂x
(6.6.20)

Replacing u∗ in ( 6.6.19) gives

− 1

4
(∇J)2 −∇Jx3 + 1

2
x2 = 0 (6.6.21)

where ∇J = ∂J∗

∂x
. This is a quadratic equation in ∇J . Noting that only a positive definite

function is acceptable as the solution, we get

∇J = −2
(

x3 −
√

x6 +
1

2
x2

)

(6.6.22)

Thus, using ( 6.6.20) and ( 6.6.22), the optimal control law is

u∗ = x3 −
√

x6 +
1

2
x2 (6.6.23)

This represents the analytical optimal solution to the HJB equation for the system ( 6.6.1)

and forms the benchmark for testing optimal performance.

To have a fair comparison between the three controls, the initial value of the state x is

chosen the same for all three designs such that x(0) = 0.1. For the optimal sliding mode

controller, φ(0) = −0.1, [w1(0), w2(0)] = [10, 12],M = 5, ǫ = 0.1. Hence η = 50. Also, in

order to make the comparison between the optimal SMC and the conventional SMC more

meaningful, for the conventional SMC, k = 5 and ǫ (boundary layer width)= 0.1.

In order to analyze quantitatively the performances of the three controls, we require

cost functionals. Since it is not possible to integrate till infinite time, the cost functional

is modified to integrate during a finite time period of 10 secs -

J1 =

∫ 10

0

(

1

2
x2 + u2

)

dt. (6.6.24)
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Moreover, in order to analyze the robustness of the three controls around the origin, we

define another cost functional given by

J2 =
1

2

∫ 10

0
x2 dt. (6.6.25)

The values of the two cost functionals J1 and J2, for different disturbances, are tabulated in

Table 6.1 and Table 6.2 respectively. From Tables 6.1 and 6.2, the following observations

can be made:

• The cost functional J1 is the least for the HJB based controller and maximum for the

conventional SMC. The performance of the Optimal SMC is quite close to that of

the HJB based optimal control, however the performance of the conventional SMC

is much worse. Thus, we can conclude that the Optimal SMC is “nearly optimal”.

• For J2, the average value for the Optimal SMC is almost 0.42 times that for the HJB

based controller, implying it is far more robust. Although the conventional SMC is

the most robust out of the three designs, it is the least optimal. The prime advantage

of the proposed scheme is that it retains the robustness of the conventional SMC

without compromising on optimality.

Next, a simulation is done for a different initial condition x(0) = 0.01, keeping all other

parameters unchanged. Figure 6.1 shows the evolution of the state x for the three different

control actions in the presence of the time-varying bounded disturbance ζ = 0.01 sin(4πt).

From the zoomed version of the state response, it can be observed that the conventional

SMC drives the state towards the origin the fastest, followed by the Optimal SMC and

the HJB based control action. It can be seen that after around 10 secs the state response

for the HJB based control begins to diverge. Thus, the optimal control derived based on

the HJB principle does not guarantee stability for time varying disturbances. Clearly, the

proposed Optimal SMC is far more robust.

Figure 6.2 shows the three different control actions. Eventually the conventional SMC

control action becomes exactly equal and opposite to ζ = 0.01 sin(4πt), making it the most

robust. Although the disturbance does not vanish , the HJB based control settles down

to zero and hence it is the least robust. The Optimal SMC action does not vanish, and

from its state response we can ascertain that it is fairly robust.

Example 2: Let us consider the following single link manipulator system

ẋ1 = x2

ẋ2 = −10 sinx1 + u+ ζ (6.6.26)
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Table 6.1: J1 for the three controls

Cases SMC Optimal SMC HJB

ζ = 0 41.7678 1.7364 0.7236

ζ = 0.01 sin(4πt) 41.8784 1.8497 0.9196

ζ = 0.01 cos(4πt) 41.9140 1.9202 0.9455

ζ = 0.1 sin(4πt) 49.0422 2.6011 1.5147

ζ = 0.1 cos(4πt) 47.4824 2.5052 1.4328

Average 44.4170 2.1225 1.10724

Table 6.2: J2 for the three controls

Cases SMC Optimal SMC HJB

ζ = 0 0.0260 0.1929 0.3652

ζ = 0.01 sin(4πt) 0.0263 0.2074 0.4636

ζ = 0.01 cos(4πt) 0.0265 0.2138 0.4766

ζ = 0.1 sin(4πt) 0.0278 0.2910 0.7628

ζ = 0.1 cos(4πt) 0.0271 0.2666 0.7208

Average 0.0267 0.2343 0.5578

where ζ represents the disturbance term and the task is to design u so as to minimize the

following cost function

J =

∫ ∞

0

(

1

2
(x1

2 + x2
2) + u2

)

dt. (6.6.27)

Design 1 : Optimal Sliding Mode Control

Let the sliding surface s be chosen as

s = c1x1 + x2 + φ (6.6.28)

Comparing with the general formulation in ( 6.3.1) and ( 6.3.2), we have f(x) = −10 sin x1
and L = 1

2(x1
2 + x2

2). Let us choose the following structure for the optimal cost-to-go

function

V =
1

2
(w1x1 + w2x2 + w3x3)

2 +
1

2
(w1

2 + w2
2 + w3

2) (6.6.29)

We skip routine details and present the final control law -

u =
1

2
[w1(w3 − w2)x1 + w2(w3 − w2)x2 +w3(w3 − w2)x3] (6.6.30)

Design 2 : Conventional Sliding Mode Control
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Figure 6.2: Control inputs

Let us define the sliding surface as

s = ė+ λe (6.6.31)

where e = x1 (as it is a regulation problem). Let a Lyapunov candidate be chosen as

V = 1
2s

2. The design steps are the same as that for a conventional SMC scheme using the

Boundary Layer Technique. We skip the details and present the final control law

u = 10 sin x1 − λx2 − k
s

(|s|+ ǫ)
(6.6.32)

where k is a positive constant such that k > max|ζ| , sgn(·) represents the signum function

and λ is a positive constant.

To have a fair comparison between the two controls, the same initial values x1(0) = 0.01

and x2(0) = 0 are chosen for both the designs. For the Optimal SMC, Theorem 1 neces-

sitates that s(0) = 0, that is, φ(0) = −c1x1(0)− x2(0). Taking c1 = 10, φ(0) = −0.1. The
initial weight vector is chosen as [w1(0), w2(0), w3(0)] = [20, 3, 5.75]. The other parameters
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are M = 1, ǫ = 0.01. Hence η = 100. Also, in order to make the comparison between

the optimal SMC and the conventional SMC more meaningful, for the conventional SMC,

k = 1,ǫ (boundary layer width)= 0.01 and λ = 10. As in the previous example, we define

two cost functionals J1 and J2 to analyze quantitatively the relative performances of the

two designs. They are defined as

J1 =

∫ 10

0

(

1

2
(x1

2 + x2
2) + u2

)

dt. (6.6.33)

and

J2 =
1

2

∫ 10

0
(x1

2 + x2
2) dt. (6.6.34)

The disturbance ζ is chosen as ζ = a sin t+b cos t where a, b are constants. From Table 6.3,

it is evident that the proposed Optimal SMC has a much lower J1 cost functional than that

of the conventional SMC, implying that it is a more optimal SMC design. Although the

conventional SMC is more robust than the proposed scheme (as is evident from the J2 cost

functional values) , it can be seen from Figures 6.3 and 6.4 that the Optimal SMC ensures

fast convergence of the states to zero even in the presence of the time varying disturbance

ζ. Figure 6.3 depicts the evolution of the position state x1 and the velocity state x2 for

the two different control actions corresponding to the case when a = 0.01, b = 0.02. Figure

6.4 shows the control inputs for the two designs.
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Figure 6.3: Position and Velocity Trajectories
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Table 6.3: J1 and J2 for the two controls

Cases SMC Optimal SMC

J1 J2 J1 J2

a=0.01,b=0.02 13.0684 0.0274 7.6162 0.0571

a=0.02,b=0.01 13.0055 0.0280 7.6265 0.0598

a=0,b=0.01 12.8628 0.0281 7.5374 0.0603

a=0.01,b=0 12.6294 0.0246 7.3033 0.0595

a=0.02,b=0.02 13.2034 0.0273 7.7225 0.0569

Average 12.9539 0.0271 7.5612 0.0587
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Figure 6.4: Control inputs

6.7 Extension to Trajectory Tracking Applications : A Case

Study

6.7.1 Problem Formulation

Let us consider the following nonlinear system

ẋ = p(x) + gu, (6.7.1)

where x ∈ ℜn , p(x) ∈ ℜn, g ∈ ℜn and u is a scalar. In accordance with the theory which

has been developed in this chapter so far, it is assumed that p(x) has a structure given

by p(x) = [x2, x3, · · · , xn, f(x)]T ; f(x) is a smooth function, and g = [0, 0, · · · , 1]T . The

objective of the infinite time optimal tracking problem is the design of the optimal control

law u∗, which ensures that the nonlinear system ( 6.7.1) tracks a desired trajectory xd in
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an optimal manner [21]. Let us define the desired trajectory to be

ẋd = p(xd) + gud, (6.7.2)

where ud is the desired control input. In equation ( 6.7.2), ẋd and p(xd) are known.

Hence, ud can obtained by rearranging ( 6.7.2). It is given by

ud = ẋnd − f(xd) (6.7.3)

Next, the state tracking error is defined as

e = x− xd (6.7.4)

Using ( 6.7.1), ( 6.7.2) and ( 6.7.4), the tracking error dynamics is given by

ė = pe(e) + gue, (6.7.5)

where pe(e) = p(x) − p(xd), and ue = u− ud. In order to control ( 6.7.5) in an optimal

manner, it is required to design ue in a way which minimizes the following infinite horizon

cost function

Je =

∫ ∞

0
[L(e) + u2e] dt. (6.7.6)

where L(e) ≥ 0 is a positive semi-definite function of the error state e.

6.7.2 Solution Methodology

We have successfully formulated the problem in accordance with the theory which has

been developed previously in this chapter. Now, we need to consider the applicability of

this theory to the model of the MRI based micro-robot guidance system. To this end, we

consider a simplified model of this system , proposed by Ferreira et al. in [7]. Some of the

main simplifying assumptions which the authors make in [7] are

• The micro-robot under consideration is assumed to be large enough to neglect the

effect of wall interaction forces such as Van der Waals force and Electrostatic force.

As the electrostatic force is neglected in this model, the need to estimate the dielectric

density of blood on-line is no longer necessary.

• The flow is assumed to be Newtonian i.e. variations of blood viscosity with vessel

diameter is not taken into account.

Based on these assumptions, the only forces acting on the micro-robot are the drag force,

the apparent weight and the force due to the magnetic field of the MRI. The blood vessel,
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which is considered to be a tube which bifurcates in two with an angle θ, is shown in

Figure 6.5. Let x1 and x2 represent the position and velocity of the micro-robot along

the horizontal axis (x-axis), and let x3 and x4 denote its position and velocity along the

vertical axis (z-axis). The state space representation of the system is as follows

(S1)











ẋ1 = x2

ẋ2 = f2(x2) + ū1

(S2)











ẋ3 = x4

ẋ4 = f4(x4) + ū2

(6.7.7)

Here,

ū1 = a2v
2
x − a1vx + a4u1 (6.7.8)

and

ū2 = b2v
2
z − b1vz − g

(

ρ

ρr
− 1

)

+ b4u2 (6.7.9)

u1 and u2 are the actual control inputs. They are the magnetic field gradients generated

by the MRI, and are given by u1 = ||∇Bx||, u2 = ||∇Bz||. vx and vz are the horizontal

and vertical components respectively, of the blood’s velocity. For a detailed description of

the other terms involved in the state space description ( 6.7.7), one is referred to [7].

The steps to solve the optimal tracking problem are mentioned below

• Firstly, from ( 6.7.7), one can observe that the system can be split into two sub-

systems S(1) and S(2). Independent control laws can be designed for each of these

subsystems. Moreover, the structure of the two subsystems matches exactly with

the class of nonlinear systems considered in our study. Thus, the first step is to

reformulate the state space equations in the format of ( 6.7.5). This gives ūe1 and

ūe2, where ūe1 = ū1 − ūd1 and ūe2 = ū2 − ūd2.

• Obtain ūd1 and ūd2 from

ūd1 = ẋ2d − f2(x2d) ; ūd2 = ẋ4d − f4(x4d) (6.7.10)

• Based on definitions of Je1 and Je2, and the design procedure outlined in this chap-

ter, one can obtain ūe1 and ūe2.

• Once ūe1 and ūe2 are known, ū1 and ū2 can be obtained easily.

• Using equations ( 6.7.8) and ( 6.7.9), the actual control inputs u1 and u2 can be

obtained. This completes the design procedure.
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Figure 6.5: A blood vessel with bifurcation

6.7.3 Simulation study

Let the cost functions be defined as

Je1 =

∫ ∞

0

(

1

2
e1

Te1 + ū2e1

)

dt (6.7.11)

and

Je2 =

∫ ∞

0

(

1

2
e2

Te2 + ū2e2

)

dt (6.7.12)

Here e1 = [x1 − x1d(t), x2 − ẋ1d(t)]T and e2 = [x3 − x3d(t), x4 − ẋ3d(t)]T . We use the

exact reference trajectories which have been used for simulation in [7]. We have x1d =

0.01 sin(5.5t2 ) and x3d = 0.01 cos(5.5t2 ). To simplify the analysis, we assume the existence of

an accurate observer which provides correct estimates of the velocity of the particle along

the horizontal and vertical directions. The velocity of blood is given by

v = 0.035 (1 + 1.15 sin(2πt)) (6.7.13)

The simulation data is provided in Table 6.4.

It should be noted that M1 and M2 are the gains associated with the signum function.

c1 and c2 are the sliding surface constants, and have been defined in accordance with the

notation developed in this chapter. The sliding surfaces for the two subsystems are defined

below

s1 = e12 + c1e11 + φ1 (6.7.14)

and

s2 = e22 + c2e21 + φ2 (6.7.15)
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Table 6.4: Simulation Data

Radius of the core r 300µm

Blood’s viscosity η 15× 10−3Pa.s

Blood’s density ρ 1060kg.m−3

Robot’s density ρsphere 8000kg.m−3

Magnetization M 1.950 × 106A.m−1

Pipe bifurcation angle θ π
2

Controller gains (M1,M2) (5, 5)

Sliding surface gains (c1, c2) (20, 20)

Boundary layer widths (ǫ1, ǫ2) (0.1, 0.1)

Here, e11 = e1(1), e12 = e1(2), e21 = e2(1), and e22 = e2(2). The initial conditions of the

states are (x10, x20) = (0.01, 0.0025) and (x30, x40) = (0.02, 0.01). The initial conditions

of φ1 and φ2 can be obtained easily from the idea that s1(0) = 0 and s2(0) = 0.

The cost function for each subsystem will be approximated by Lyapunov functions.

These Lyapunov functions are defined as

V1 =
1

2
(w1e11 + w2e12 + w3φ1)

2 +
1

2
(w1

2 + w2
2 + w3

2) (6.7.16)

V2 =
1

2
(w4e12 + w5e22 + w6φ2)

2 +
1

2
(w4

2 + w5
2 + w6

2) (6.7.17)

The initial conditions of the weights in the Lyapunov functions are (w1, w2, w3) = (2, 5, 7)

and (w4, w5, w6) = (4, 5, 10).

6.7.4 Discussion of Results

• Table 6.5 shows the details of the simulation study. We find that the position states

converge to their desired reference trajectories. This is apparent from the trajectory

plots and the plots of the sliding surfaces.

• The control inputs are smooth and have magnitudes less than 80mT/m. Thus, the

practical bounds on the MRI gradients are not exceeded.

• It is seen that the control actions ūe1 and ūe2 converge to zero. This is expected at

steady state when the error states converge to zero. Also, this ensures that when the

transients decay, ū1 becomes ūd1 and ū2 becomes ūd2, i.e. the control inputs attain

their desired values.
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Remarks-

• The simulation study which has been conducted, illustrates how a tracking problem

can be solved in an optimal manner, using the algorithm developed in this chapter.

• Although the theory has been developed for a particular class of nonlinear systems,

considering only a single input, the basic ideas can be extended to MIMO nonlinear

systems as well.

• The developed theory can be used for robotic manipulators as well. For a n-link

rigid robotic manipulator, the entire system can be decomposed into n subsystems,

and the theory presented can be applied to design control laws for each subsystem.

6.8 Summary

In this chapter, a novel approach for the development of an Optimal SMC has been pre-

sented using a Single Network Adaptive Critic for approximating the solution to the HJB

equation. Unlike earlier approaches, the parameter φ of the time-varying sliding surface,

which adds the extra degree of freedom, is updated online. A detailed stability analysis of

the entire scheme has been performed. A systematic design procedure for implementing

the proposed algorithm has been presented. The performance of the proposed control de-

sign has been studied through simulation results on first order and second order nonlinear

control affine systems. It has been observed that not only is the proposed scheme far

more optimal than the conventional SMC, it also guarantees asymptotic stability in the

sense of Lyapunov for systems with bounded time-varying disturbances. The developed

technique has then been tested for a trajectory tracking application on the MRI based

micro-robot guidance system. Thus, the design motivation of merging the robustness of

conventional SMC with optimal control theory has been successfully achieved with the

proposed scheme.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

In this thesis, we studied the feasibility of applying Sliding Mode Control (SMC) to two

applications - MRI based targeted drug delivery using a ferromagnetic micro-robot, and

control of a 4 DOF Barrett Whole Arm Manipulator. We started off by designing an

Adaptive Fuzzy Sliding Mode Control scheme (AFSMC) for steering a micro-robot along

the center-line of a human blood vessel. We used a highly nonlinear model existing in

literature for the same. The design procedure and stability analysis of the proposed

scheme was presented. Simulations were performed to compare our design with a state-of-

the-art backstepping approach. The proposed scheme was able to achieve perfect tracking

and could estimate the dielectric density of blood on-line. Moreover, the control law was

smooth and did not exceed the practical bounds set for this application.

Next, we developed a rigid body model of the Barrett WAM (4 DOF) using the Newton-

Euler technique. This was the first step towards its control. The model was validated

through tracking experiments performed on all 4 joints, using two control strategies -

Backstepping and Sliding Mode Control. Comparisons were drawn between the two tech-

niques based on the Root Mean Square Error and Mean control effort. Conventional

SMC only guarantees asymptotic stability. This motivated us to develop a Nonsingular

Fast Terminal Sliding Mode Control (NFTSMC) scheme which could ensure finite time

convergence of the error trajectories to zero. We presented the detailed proof of time

convergence. Simulations on simple 1st and 2nd order systems were used to illustrate the

main ideas. The concept was extended to the trajectory tracking problem of the WAM.

A comparative study was performed between simulations and experiments conducted on

the WAM, to understand the differences existing between the two environments.
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Finally, we explored the concept of optimal sliding mode control. This was an effort

towards fusing the inherent robustness feature of SMC with optimal control. To this end,

a dynamic sliding surface was defined. The time varying parameter of the sliding surface

lent the extra degree of freedom necessary to make the design optimal. This parameter was

updated on-line, in an optimal manner, using the continuous time version of the Single

Network Adaptive Critic (SNAC) architecture. The main design steps were outlined.

Analysis of stability was presented. Comparisons were drawn with HJB based control

and SMC. It was found that the developed technique was more robust as compared to

a HJB based design, but less robust as compared to a conventional SMC. However, it

was a more optimal design as compared to SMC, but less optimal as compared to a HJB

based controller. Thus, in a sense, the proposed design can be thought of as a more

optimal version of the conventional SMC which incurs less control effort. To illustrate

how the optimal sliding mode control technique can be extended to a tracking problem, we

considered a simplified model of the MRI based micro-robot guidance system. Simulation

results were presented for this case study.

Some directions of future research are as follows

7.1.1 Future Work on the MRI-Drug Delivery System

• In our work, we assumed that a perfect imaging system already exists which provides

noise-free position feedback information. Thus, the development of accurate and fast

image processing algorithms is key to real time implementation of this concept. This

is an area which needs a lot of exploration.

• Building a simulation environment which mimics the MRI system is necessary. This

simulator should be able to replicate the closed loop feedback mechanism by making

the image processing module and the control module work in tandem with minimum

latency.

• A thermal modeling of the MRI cooling system can be used to frame an optimization

problem which seeks to maximize the MRI gradients and the duty cycles of operation,

subject to imposed conditions on the temperature limits of the cooling system. This

is a very relevant problem which has not be attempted in literature.

• Variants of SMC and other robust control techniques can be developed for this model,

and a comparative study among them can give a fair idea regarding the most feasible

approach.
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• In our study, we have not considered the design of observers. This is another area

that merits further research.

7.1.2 Future Work on Control of the WAM robot

• Firstly, the rigid body model which has been developed can be further refined. This

can be achieved by either using statistical regression techniques or by using nonlinear

disturbance observers based on Lyapunov theory.

• A hybrid model, based mainly on rigid body modeling and refined by using state-of-

the-art online regression techniques (such as Locally Weighted Projection Regression

[73]), when used in tandem with the robust SMC techniques developed in this thesis,

can lead to further accuracy in tracking performance.

• Since the main goal of this work is Imitation Learning, the developed control module

can be tested in real time with the Dynamic motion generator module. This would

draw more attractiveness towards our work and make it more complete.

• During our experiments, we have encountered mechanical vibrations of the WAM

owing to the chattering phenomenon. For simplicity, we have used the Boundary

layer approach in our experiments. The Adaptive Fuzzy algorithm discussed in this

thesis can be extended to the WAM model. Also, Higher Order Sliding Mode Con-

trol has been known to completely remove the chattering phenomenon [43]. These

chattering removal techniques can be tested to obtain more smooth control laws.

• The Optimal sliding mode control design can be extended to the WAM model. This

can be an interesting area of research.

• An important point to note is that although all the control development takes place

in continuous time domain, implementations in real time always lead to discretization

of these control laws. Often, numerical instability results as a consequence. To avoid

this, Discrete sliding mode control (DSMC) designs can be taken up. DSMC, infact,

represents the future in the area of practical implementations of SMC.
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