Linear Convergence in Federated Learning: **Tackling Client Heterogeneity and Sparse Gradients**

Federated Learning Setup

Clients

- Each client $i \in C$ has a local loss function $f_i(x) = \mathbb{E}_{z \sim D_i}[F_i(x; z)]$.
- Goal: Minimize

$$f(x) = \frac{1}{m} \sum_{i \in \mathcal{C}} f_i(x)$$

- **Q.** How can we achieve linear convergence rates?
- **Q.** How do such rates compare with a centralized baseline?

Challenges, Motivation, and Contributions

Challenges

- Statistical Heterogeneity: Clients' loss functions can have different minima.
- Systems Heterogeneity: Clients can have different operating speeds. Can lead to **stragglers** that slow down pace of computation.
- Intermittent and Imprecise Communication: Local steps & compression.

Existing Algorithms and Results

- FedAvg, FedProx, and FedNova all fail to guarantee linear convergence to the global minimum x^* . Suffer from "speed-accuracy conflict".
- For **Scaffold** and **FedSplit**: No lower bounds; do not account for systems heterogeneity; no sparsification/compression.

Contributions

- Propose a new algorithmic framework called **FedLin** that tackles statistical+systems heterogeneity, and sparse gradients.
- Prove that FedLin matches centralized rates despite arbitrary heterogeneity.
- Provide the first tight linear convergence rate analysis in FL.
- Provide the first analysis of biased gradient sparsification in FL.
- Key Takeaway: Even mild statistical heterogeneity across clients' loss functions can hurt convergence rates.

Email: {amitra20, rayanaj, pappasg, hassani}@seas.upenn.edu

Proposed Algorithm: FedLin

Full gradient at this point is $\nabla f(\bar{x}_t)$

Idea: Use $\nabla f(\bar{x}_t)$ as guiding direction in round t

• FedLin exploits memory for objective heterogeneity, client-specific learning rates $(\eta_i \propto 1/\tau_i)$ for systems heterogeneity, and errorfeedback for gradient sparsification. The FedLin update rule is:

$$x_{i,\ell+1}^{(t)} \leftarrow x_{i,\ell}^{(t)} - \eta_i (\nabla f_i(x_{i,\ell}^{(t)}) - \nabla f_i(\bar{x}_t) + g_t)$$

- Here, g_t is an inexact version of $\nabla f(\bar{x}_t)$ due to sparsification.
- Key Property: Global minimum is a fixed point of FedLin.
- FedAvg, FedProx, FedNova, and Scaffold *do not* have this property.

Main Theoretical Results

• Suppose each $f_i(x)$ is L-smooth and μ - strongly convex.

Theorem I (Upper Bound for FedLin)

Suppose $\tau_i \ge 1$, $\eta_i = 1/(6L\tau_i)$. Then, after *T* comm. rounds, we have: $f(\bar{x}_{T+1}) - f(x^*) \le \left(1 - \frac{1}{6\kappa}\right)^T (f(\bar{x}_1) - f(x^*))$

Theorem II (Lower Bound for FedLin)

Suppose all clients perform *H* local steps. Given any $H \ge 2$, \exists an initial condition \bar{x}_1 , and an instance involving 2 clients, s.t. for FedLin, $f(\bar{x}_{T+1}) - f(x^*) \ge \exp(-4T) \left(f(\bar{x}_1) - f(x^*) \right)$

Main Takeaways:

- FedLin guarantees linear convergence to x^* despite arbitrary objective and systems heterogeneity.
- Convergence rate is **tight**. No benefits of performing multiple local steps. $\eta \propto 1/H$ is necessary.
- Lower bound holds even for **simple** instances: quadratic losses with same minima!

Uplink/ Downlink	Error- Feedback	Convergence Rate ($\delta = d/k$ is the compression ratio)		
Server	No	$f(\bar{x}_{T+1}) - f(x^*) \le \left(1 - \frac{1}{2\delta_s(2 + \sqrt{\delta_s})\kappa}\right)^T (f(\bar{x}_1) - f(x^*))$		
Server	Yes	$f(\bar{x}_{T+1}) - f(x^*) \le 2\kappa \left(1 - \frac{1}{96\delta_s\kappa}\right)^T (f(\bar{x}_1) - f(x^*))$		
Clients	Yes	$f(\bar{x}_{T+1}) - f(x^*) \le 2\kappa \left(1 - \frac{3}{4}\bar{\eta}\mu\right)^T \left(f(\bar{x}_1) - f(x^*)\right) + O(\bar{\eta}); \bar{\eta} \propto \frac{1}{\delta_c}$		

 $x^*|^2$ $|x_{t}|^{-1}$

=_2 *8 10-10 $\|\bar{x}_t$ 10-2

Algorithm	Linear Conv. to x^*	Lower Bounds	Systems Heterogeneity	Sparsification/ Compression
FedAvg	×	\checkmark	×	×
FedProx	×	—	×	×
FedNova	×	—	\checkmark	×
FedSplit	×	—	×	×
Scaffold	\checkmark	—	×	×
FedLin	\checkmark	\checkmark	\checkmark	\checkmark

Table: Succinct comparison of FedLin with state-of-the-art FL algorithms

Additional Results and Simulations

Table: Summary of results for gradient sparsification

