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4 ) - FedLin exploits memory for objective heterogeneity, client-specific Table: Summary of results for gradient sparsification
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Q. How can we achieve linear convergence rates? « Key Property: Global minimum is a fixed point of FedLin. iejlrj;n: n= 888; iejﬁn; n = 888i
_ edLin: np = 0. edLin: n = 0.
Q. How do such rates compare with a centralized baseline? - FedAvg, FedProx, FedNova, and Scaffold do not have this property. 1020 LT IN 1] % [ T T N
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Statistical Heterogen_elty. (?Ilents loss functions can have different minima. Theorem | (Upper Bound for FedLin) I )
« Systems Heterogeneity: Clients can have different operating speeds. Can (=3 o i)
lead to stragglers that slow down pace of computation. (" h 102} |
. . o . Suppose 7; = 1, n; = 1/(6L71;). Then, after T comm. rounds, we have: e \
 Intermittent and Imprecise Communication: Local steps & compression. T | . . ' :
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Existing Algorithms and Results
- FedAvg, FedProx, and FedNova all fail to guarantee linear convergence to Theorem Il (Lower Bound for FedLin) Figure: Simulations on a linear regression model
the global minimum x*. Suffer from “speed-accuracy conflict” .
« For Scaffold and FedSplit: No lower bounds; do not account for systems 4 . . — ) ificati
heterogeneity: no sparsﬁication/compression. y Suppose all clients perform H local steps. Given any H = 2, 3 an initial Algorithm | Linear Conv. to x* EOWG::I Ely?tems " SCparsn‘lcatl.on/
condition x;, and an instance involving 2 clients, s.t. for FedLin, ounds cterogencily | Lompression
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Contributions J FedProx x _ x x
* Propose a new algorithmic framework called FedLin that tackles Main Takeaways: FedNova x _ v x
statistical+systems heterogeneity, and sparse gradients. _ _ _ _ _
_ _ _ _ _ « FedLin guarantees linear convergence to x* despite arbitrary FedSplit x — x x
 Prove that FedLin matches centralized rates despite arbitrary heterogeneity. objective and systems heterogeneity. Scaffold ~ " "
* Provide the first tight linear convergence rate analysis in FL. « Convergence rate is tight. No benefits of performing multiple local FedLin % % % /
* Provide the first analysis of biased gradient sparsification in FL. steps. n < 1/H Is necessatry.
* Key Takeaway: Even mild statistical heterogeneity across clients’ loss * Lower bound h,OIdS even for simple instances: quadratic losses with Table: Succinct comparison of FedLin with state-of-the-art FL algorithms
functions can hurt convergence rates. same minima:
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