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Server

Clients

• Each client 𝑖 ∈ 𝒞 has a local loss function  𝑓𝑖 𝑥 = 𝔼𝑧~𝒟𝑖
𝐹𝑖 𝑥; 𝑧 .

• Goal: Minimize 

𝑓 𝑥 =
1

𝑚
σ𝑖∈𝒞 𝑓𝑖(𝑥)

Q. How can we achieve linear convergence rates?

Q. How do such rates compare with a centralized baseline?

Challenges

• Statistical Heterogeneity: Clients’ loss functions can have different minima.

• Systems Heterogeneity: Clients can have different operating speeds. Can 
lead to stragglers that slow down pace of computation.

• Intermittent and Imprecise Communication: Local steps & compression.

Existing Algorithms and Results

• FedAvg, FedProx, and FedNova all fail to guarantee linear convergence to 
the global minimum 𝑥∗. Suffer from “speed-accuracy conflict” .

• For Scaffold and FedSplit: No lower bounds; do not account for systems 
heterogeneity; no sparsification/compression.

Contributions

• Propose a new algorithmic framework called FedLin that tackles 
statistical+systems heterogeneity, and sparse gradients.

• Prove that FedLin matches centralized rates despite arbitrary heterogeneity.

• Provide the first tight linear convergence rate analysis in FL.

• Provide the first analysis of biased gradient sparsification in FL.

• Key Takeaway: Even mild statistical heterogeneity across clients’ loss 
functions can hurt convergence rates.

Challenges, Motivation, and Contributions

Round 𝑡 Round 𝑡 + 1

Full gradient at this point is ∇𝑓( ҧ𝑥𝑡)

𝑙-th local step

Idea: Use ∇𝑓 ҧ𝑥𝑡 as guiding direction in round 𝑡

• FedLin exploits memory for objective heterogeneity, client-specific 
learning rates (𝜂𝑖 ∝ 1/𝜏𝑖) for systems heterogeneity, and error-
feedback for gradient sparsification. The FedLin update rule is:

• Here, 𝑔𝑡 is an inexact version of ∇𝑓( ҧ𝑥𝑡) due to sparsification.

• Key Property: Global minimum is a fixed point of FedLin.

• FedAvg, FedProx, FedNova, and Scaffold do not have this property.

Main Theoretical Results

• Suppose each 𝑓𝑖(𝑥) is 𝐿-smooth and 𝜇- strongly convex.

Suppose 𝜏𝑖 ≥ 1, 𝜂𝑖 = 1/(6𝐿𝜏𝑖). Then, after 𝑇 comm. rounds, we have:

𝑓 ҧ𝑥𝑇+1 − 𝑓(𝑥∗) ≤ 1 −
1

6𝜅

𝑇
(𝑓 ҧ𝑥1 − 𝑓(𝑥∗))

Theorem I (Upper Bound for FedLin)

Suppose all clients perform 𝐻 local steps. Given any 𝐻 ≥ 2, ∃ an initial 

condition ҧ𝑥1, and an instance involving 2 clients, s.t. for FedLin,

𝑓 ҧ𝑥𝑇+1 − 𝑓 𝑥∗ ≥ exp(−4𝑇) (𝑓 ҧ𝑥1 − 𝑓(𝑥∗))

Theorem II (Lower Bound for FedLin)

Main Takeaways:

• FedLin guarantees linear convergence to 𝑥∗ despite arbitrary
objective and systems heterogeneity.

• Convergence rate is tight. No benefits of performing multiple local 
steps. 𝜂 ∝ 1/𝐻 is necessary.

• Lower bound holds even for simple instances: quadratic losses with 
same minima!
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Additional Results and Simulations

Table: Summary of results for gradient sparsification

Algorithm Linear Conv. to 𝑥∗
Lower 

Bounds

Systems 

Heterogeneity

Sparsification/

Compression

FedAvg  ✓  

FedProx  −  

FedNova  − ✓ 

FedSplit  −  

Scaffold ✓ −  

FedLin ✓ ✓ ✓ ✓

Figure: Simulations on a linear regression model

Table: Succinct comparison of FedLin with state-of-the-art FL algorithms
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