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ABSTRACT

Mitra, Aritra Ph.D., Purdue University, August 2020. New Approaches to Distributed
State Estimation, Inference and Learning with Extensions to Byzantine-Resilience.
Major Professor: Shreyas Sundaram.

In this thesis, we focus on the problem of estimating an unknown quantity of

interest, when the information required to do so is dispersed over a network of agents.

In particular, each agent in the network receives sequential observations generated by

the unknown quantity, and the collective goal of the network is to eventually learn

this quantity by means of appropriately crafted information diffusion rules. The

abstraction described above can be used to model a variety of problems ranging from

environmental monitoring of a dynamical process using autonomous robot teams,

to statistical inference using a network of processors, to social learning in groups of

individuals. The limited information content of each agent, coupled with dynamically

changing networks, the possibility of adversarial attacks, and constraints imposed by

the communication channels, introduce various unique challenges in addressing such

problems. We contribute towards systematically resolving some of these challenges.

In the first part of this thesis, we focus on tracking the state of a dynamical pro-

cess, and develop a distributed observer for the most general class of LTI systems,

linear measurement models, and time-invariant graphs. To do so, we introduce the

notion of a multi-sensor observable decomposition - a generalization of the Kalman

observable canonical decomposition for a single sensor. We then consider a scenario

where certain agents in the network are compromised based on the classical Byzan-

tine adversary model. For this worst-case adversarial setting, we identify certain

fundamental necessary conditions that are a blend of system- and network-theoretic

requirements. We then develop an attack-resilient, provably-correct, fully distributed
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state estimation algorithm. Finally, by drawing connections to the concept of age-

of-information for characterizing information freshness, we show how our framework

can be extended to handle a broad class of time-varying graphs. Notably, in each of

the cases above, our proposed algorithms guarantee exponential convergence at any

desired convergence rate.

In the second part of the thesis, we turn our attention to the problem of distributed

hypothesis testing/inference, where each agent receives a stream of stochastic signals

generated by an unknown static state that belongs to a finite set of hypotheses. To

enable each agent to uniquely identify the true state, we develop a novel distributed

learning rule that employs a min-protocol for data-aggregation, as opposed to the

large body of existing techniques that rely on “belief-averaging”. We establish con-

sistency of our rule under minimal requirements on the observation model and the

network structure, and prove that it guarantees exponentially fast convergence to

the truth with probability 1. Most importantly, we establish that the learning rate

of our algorithm is network-independent, and a strict improvement over all exist-

ing approaches. We also develop a simple variant of our learning algorithm that

can account for misbehaving agents. As the final contribution of this work, we de-

velop communication-efficient rules for distributed hypothesis testing. Specifically, we

draw on ideas from event-triggered control to reduce the number of communication

rounds, and employ an adaptive quantization scheme that guarantees exponentially

fast learning almost surely, even when just 1 bit is used to encode each hypothesis.
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1. INTRODUCTION

In various social and engineered settings, we are often faced with the problem of

extracting meaningful information regarding an unknown (static or dynamic) param-

eter of interest, based on sequential observations of data. For instance, the unknown

parameter may represent the state of a dynamical process, in which case, the data

would represent measurements acquired by sensors. In a Federated learning setting,

the parameter could be the best global model that is statistically consistent with the

data available to a group of clients. Alternatively, the problem of interest may involve

a group of individuals attempting to discern the truth regarding a topic of social or

political interest, based on their own private observations (for instance, in the form of

social media), and the information acquired from peers in their community. With so-

cial and engineering systems growing in size and complexity, the information needed

to solve the above problems is rarely concentrated at a single point of the system.

Instead, for such large-scale complex systems, information is usually dispersed across

a network, and individual agents1 in the network are endowed with signals that are

only partially informative of the unknown parameter. In other words, each agent

only has an incomplete view of the truth - a feature that underlies various inference

problems over networks, and leads to the following fundamental question.

How should information be disseminated and aggregated across the network so as

to enable each individual agent to eventually become knowledgeable about the unknown

quantity of interest?

Several related questions naturally arise.

1Throughout the thesis, we will use the terms “agents” and “nodes” interchangeably.
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– What are the minimal requirements on the information structure of the agents

and the underlying communication network topology that facilitate inference of

the unknown quantity?

– If inference is indeed possible, how fast do the agents learn the true parameter,

and what factors influence the convergence rate?

– How do answers to the above questions get altered when there are temporal

variations in the communication pattern of the agents?

– If certain agents misbehave or deviate from the standard protocol, under what

conditions (if any) can one still hope to solve the problem at hand?

Answers to such questions can not only improve our understanding of modern net-

worked engineering systems, but also provide critical insights into various social phe-

nomenon. Despite extensive research on related problems over the past couple of

decades, the existing body of literature remains silent on some of the questions posed

above, or at best, provides partial answers. This motivates our present work.

In this thesis, we systematically develop and analyze novel algorithms (with vari-

ous advantages over those already existing) to address two broad classes of problems

that lie at the intersection of control theory, statistical signal processing, and network

science: distributed state estimation of an LTI system, and distributed hypothesis

testing (also known as distributed detection/inference/non-Bayesian social learning).

In what follows, we provide a brief overview of each of these problems, and then delve

into our specific contributions.

1.1 Overview and Contributions

1.1.1 Distributed State Estimation of an LTI System

Given a discrete-time LTI system x[k + 1] = Ax[k], and a linear measurement

model y[k] = Cx[k], a classical result in control theory states that one can design an
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observer that generates an asymptotically correct estimate x̂[k] of the state x[k], if

and only if the pair (A,C) is detectable. Additionally, if the pair (A,C) is observable,

then one can achieve exponential convergence at any desired convergence rate. Over

the last couple of decades, significant effort has been directed towards studying the

distributed counterpart of the above problem, wherein observations of the process are

distributed among a set of sensors modeled as nodes of a communication graph. As

we describe in Chapter 2, much of the earlier work on this problem makes restrictive

assumptions either on the dynamical system model, or on the observation model of

the nodes, and/or the structure of the communication network. The nature of such

assumptions range from restrictions on the spectrum of the state transition matrix

A, to that of local observability at each node (implying that each node can observe

the entire state dynamics), to that of all-to-all communication networks (implying

that each node can communicate with every other node directly). To the best of our

knowledge, the authors in [1] were the first to characterize necessary and sufficient

conditions for the problem under consideration. Their approach, however, requires

certain nodes in the network to maintain observers of dimension greater than that of

the state. Thus, at this stage, the following basic question was still left open.

Is it possible to come up with an approach that works under the same minimal

assumptions as in [1], and yet requires each node to maintain an observer of dimension

no more than that of the state?

In Chapter 2, we answer this question in the affirmative. While these devel-

opments are of theoretical appeal, they do not directly pave the way for practical

implementations, as we discuss below.

At the heart of several applications in environmental monitoring, surveillance and

patrolling, lies a distributed state estimation problem [2–13]. In such settings, a net-

work of mobile agents are required to collectively gain information regarding the state

of dynamical process evolving over a region. However, achieving such an objective

in practice is fraught with various challenges, including intermittent observations of

the dynamical process, loss of communication links due to mobility and packet drops,
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and the potential for malicious or faulty behavior by some of the agents. In partic-

ular, for mission-critical applications, adversarial attacks on certain agents can have

far-reaching consequences. A specific example of such a scenario involves the use

of autonomous mobile robots for estimating radiation concentrations around nuclear

plants, following leakages that are either accidental or due to malicious intent [14–16].

In the first part of this thesis, we take a significant step towards addressing the chal-

lenges described above through the following sequence of developments.

• Distributed State and Functional Observers for LTI Systems: In Chap-

ter 2, we develop a novel approach towards designing distributed observers for

the most general class of LTI systems, sensor observation matrices, and time-

invariant communication network structures. As a deviation from existing tech-

niques, our framework requires a node to employ different strategies for esti-

mating the locally detectable and undetectable portions of the state (w.r.t. its

own measurements). Specifically, it employs consensus for estimating only the

locally undetectable portion of the state, while the locally detectable portion

is estimated via a standard Luenberger observer. Furthermore, the consensus

weights are chosen carefully in a manner that respects the information structure

of the nodes. We show that our simple, intuitive approach leads to a new class

of observers with several appealing features. In particular, as mentioned earlier,

the dimension of the observer maintained by each node is no more than that of

the state. Finally, we establish robustness of the proposed observer to a certain

class of time-varying graphs induced by communication losses.

In practice, it may very well be the case that the quantity of interest is in

fact a functional of the state, rather than the state itself. Is it possible to

collaboratively estimate such a functional without having to estimate the entire

state? The question posed above is particularly relevant when the dimension of

the functional of interest is far lower than the dimension of the state. Motivated

by this consideration, we focus on designing distributed functional observers in

the latter half of Chapter 2.
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• Byzantine-Resilient Distributed Observers for LTI Systems: In Chap-

ter 3, we study the problem of collaborative state estimation when a certain

fraction of the nodes are compromised by an adversary. As we explain in the

chapter, the limited existing literature on this topic either imposes restrictive

assumptions on the attack model, or provides no theoretical guarantees. In

contrast, to account for worst-case adversarial behaviour, we employ the classi-

cal Byzantine adversary model where a compromised node possesses complete

knowledge of the system dynamics and the network, and can deviate arbitrarily

from the rules of any prescribed algorithm. We first characterize certain funda-

mental limitations of any distributed state estimation algorithm in terms of the

measurement and communication structure of the nodes. We argue that such

a characterization generalizes the conditions for non-resilient distributed state

estimation on the one hand, and resilient centralized state estimation on the

other. We then develop an attack-resilient, provably correct state estimation

algorithm that admits a fully distributed implementation. To characterize fea-

sible network topologies that guarantee applicability of our proposed technique,

we introduce a notion of ‘strong-robustness’ that captures both measurement

and communication redundancy. Finally, by drawing connections to bootstrap

percolation theory, we argue that given an LTI system and an associated sensor

network, the ‘strong-robustness’ property can be checked in polynomial time.

• Distributed State Estimation over Time-Varying Graphs: In Chapter

4, we turn our attention to dealing with the issue of time-varying communica-

tion graphs. This problem is particularly challenging since it requires analyzing

the stability of a linear time-varying system where the state transition matrix at

each time-step can be potentially unstable, owing to instability in the external

dynamics to be tracked. The latter feature is unique to our problem of interest,

and sets it apart from other distributed problems (such as consensus, optimiza-

tion, or linear-equation solving) on time-varying networks where one is primar-

ily interested in analyzing convergence properties of products of row-stochastic
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matrices (modulo additional perturbations that are specific to the problem).

Owing to such complications, the limited literature on this topic either makes

restrictive assumptions on the sequence of communication graphs (as we do in

Chapter 2), or resorts to a two time-scale approach (as in [17]).2 The main

contribution of the chapter is to develop a novel single time-scale distributed

observer that works under remarkably mild assumptions on the sequence of

time-varying graphs in comparison with existing methods. In particular, as a

key departure from existing literature, our approach can even handle scenar-

ios with growing inter-communication intervals. Under suitable assumptions

on the rate of growth of such intervals, we establish that joint observability3

is sufficient to track the state of any discrete-time LTI system exponentially

fast, at any desired rate. We also argue that via an appropriate design of the

observer gains, one can achieve finite-time convergence. The main idea behind

our approach is the introduction of a metric called the “freshness-index” that

dynamically keeps track of the quality4 of information being diffused across the

network, and in turn, helps achieve stability of the error dynamics. Finally, we

note that as the approach in Chapter 4 generalizes that of Chapter 2, conver-

gence rate results in the former have direct implications for those in the latter.

In summary, the developments in Chapters 2 and 4 indicate that a distributed

observer can be appropriately designed to match (almost all) the properties of

a centralized Luenberger observer - a result hitherto missing in the literature.

1.1.2 Distributed Hypothesis Testing/Inference

Consider a scenario where in a group of agents, each agent sequentially observes

certain private stochastic signals over time. These signals are statistically generated

2Here, by a two time-scale approach, we refer to an approach that requires multiple consensus
iterations between two consecutive time-steps of the dynamics.
3By joint observability, we imply that the state is observable w.r.t. the collective measurements of
all the nodes in the network.
4The notion of quality that we refer to here will be made precise later in Chapter 4.
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by an underlying ground truth that belongs to a finite set of hypotheses. The collec-

tive goal of the group is to infer the true state of the world that explains the joint

observation profiles of the group. Of course, it may not be possible for any single

agent to perform such a task in isolation owing to the partially informative nature

of its own private signals. Such a mathematical abstraction can be used to model

various social phenomenon such as the spreading of ideas, opinions on topics of social

and political interest, and day-to-day decision making problems (who to vote for,

which product to buy etc.) [18–22]. One can also employ such a framework to study

hypothesis testing problems pertaining to engineering applications (such as object

classification based on images captured by different sensors), or analyze statistical

inference problems with data distributed over multiple processors [23]. In a large net-

work, it is rarely the case that any given agent has access to the private signals of all

other agents. Thus, in general, it is not possible for any given agent to employ a fully

Bayesian estimator. To work around this difficulty, the existing literature adopts a

belief update mechanism that requires an agent to combine a local Bayesian update

(based on private observations) with a consensus-based opinion pooling of neighbor-

ing beliefs. In particular, such consensus-based pooling refers to either a weighted

arithmetic average of beliefs, or a weighted geometric average. In this context, our

contributions are as follows.

• A Novel Distributed Learning Rule: Improved Learning Rate and Ex-

tension to Byzantine-Resilience: In Chapter 5, we propose a belief update

rule that differs fundamentally from those in the existing literature. Specifi-

cally, our learning rule does not employ any form of “belief-averaging” or linear

consensus based belief aggregation protocol. Instead, our approach requires

each agent to maintain two belief vectors, namely, a local belief vector and

an actual belief vector. For each hypothesis, an agent updates its local belief

on that hypothesis based on standard Bayes rule. This is done without any

network influence. Subsequently, the agent updates its actual belief on that

hypothesis (up to normalization) as the minimum of its own local belief (on
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that hypothesis) and the actual beliefs of its neighbors. We show that under

minimal requirements on the information structures of the agents and the un-

derlying communication graph, every agent is able to learn the true state of the

world asymptotically almost surely. Given the nonlinear nature of our proposed

update rule, existing analysis techniques that study linear belief recursions can-

not be adapted to suit our needs. This requires us to develop a novel sample

path based proof technique to establish consistency of our learning rule.

As the most significant contribution of this chapter, we prove that with prob-

ability 1, every agent rules out each false hypothesis exponentially fast, at a

network-independent rate that strictly improves upon all existing learning rates.

Specifically, with existing “belief-averaging” schemes, the asymptotic rate at

which a particular false hypothesis is ruled out is given by a convex combination

of the agents’ relative entropies, where the convex weights are the eigenvector

centralities of the agents. In contrast, the corresponding rate for our rule is

the best relative entropy (between the true state and the false hypothesis under

consideration) across the network. Unlike existing approaches, such a rate does

not exhibit any dependence on the size or structure of the network, and is solely

determined by the observation model of the agents. A key implication of this

fact is that the long-run performance of our rule does not get impacted by the

specific manner in which signal structures are allocated across the network, as

long as the total information content remains the same.

The final contribution of Chapter 5 is to propose and analyze a simple and

computationally-efficient variant of our learning rule that guarantees exponen-

tially fast learning with probability 1, despite the presence of misbehaving

agents modeled as per the classical Byzantine adversary model.5

• Distributed Hypothesis Testing with Sparse and Quantized Commu-

nication: In Chapter 6, we investigate the distributed hypothesis testing prob-

5Given the context of social learning, such agents can be used model stubborn individuals or religious,
political extremists.
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lem when communication between agents is costly, and takes place over channels

with finite bandwidth. Our focus is on answering the following basic questions.

(i) How frequently should the agents interact to learn the truth? (ii) What piece

of information needs to be exchanged? (iii) How much can we compress the

information being transmitted? Addressing these questions is critical to resolv-

ing the communication bottleneck in modern distributed systems where devices

run on low-battery power, setting up communication links incur great latency,

and channels can support only a finite number of bits. To reduce the number

of communication rounds, we propose an event-triggered distributed learning

algorithm where an agent broadcasts only those components of its belief vec-

tor that have adequate innovation, to only those neighbors that are in need of

such information. We prove that incorporating feedback from neighbors enables

our rule to significantly reduce information flow from uninformative agents to

informative agents. We identify sparse communication regimes where the inter-

communication intervals between the agents grow unbounded over time, and

yet, all agents end up learning the truth exponentially fast almost surely at the

best known rate for this problem (which is precisely the rate that we obtain in

Chapter 5.) We also discuss various trade-offs between the rate of convergence

and the sparsity of the communication pattern.

We next ask: To learn the true state, how many bits must an agent use to

encode its belief on each hypothesis? To answer this question, we develop

a novel algorithm that leverages the idea of adaptive quantization. We show

that, if each agent sequentially refines the range of its quantizers, then all agents

can learn the truth exponentially fast under our rule, while using just 1 bit to

encode each hypothesis. Our findings reveal a relationship between the learning

rate and the quantizer precision levels. Using this result, we show that if the

number of bits used to encode each hypothesis is chosen to be large enough, then

one can recover the exact same learning rate as with infinite precision. In sum,
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we develop communication-efficient distributed learning algorithms that provide

strong theoretical guarantees in the face of sparse and imprecise communication.

1.2 Notation and Terminology

A directed graph is denoted by G = (V , E), where V = {1, · · · , N} is the set of

nodes and E ⊆ V × V represents the edges. An edge from node j to node i, denoted

by (j, i), implies that node j can transmit information to node i. The neighborhood

of the i-th node is defined as Ni , {i}∪{j | (j, i) ∈ E}. A node j is said to be an out-

neighbor of node i if (i, j) ∈ E . By an induced subgraph of G obtained by removing

certain nodes C ⊂ V , we refer to the subgraph that has V \ C as its node set and

contains only those edges of E with both end points in V \C. The notation |V| is used

to denote the cardinality of a set V . Throughout this thesis, the terms ‘network’ and

‘communication graph’ are used interchangeably.

The set of all eigenvalues of a matrix A is denoted by sp(A) , {λ ∈ C | det(A−

λI) = 0}. The set of all marginally stable and unstable eigenvalues of a matrix A is

denoted by ΛU(A) , {λ ∈ sp(A) | |λ| ≥ 1}. For a matrix A, we use aA(λ) and gA(λ)

to denote the algebraic and geometric multiplicities, respectively, of an eigenvalue

λ ∈ sp(A). An eigenvalue λ is said to be simple if aA(λ) = gA(λ) = 1. We use R(A)

to denote the row-space of A and A† to refer to its Moore Penrose inverse. Unless

otherwise specified, we will use ‖A‖ to represent the induced 2-norm of a matrix A.

For a set {A1, · · · ,An} of matrices, we use the notation diag(A1, · · · ,An) to refer

to a block diagonal matrix with the matrix Ai as the i-th block-diagonal entry. For

a set S = {s1, · · · , sp} ⊆ {1, · · · , N}, and a matrix C =
[
CT

1 · · · CT
N

]T
, we define

CS ,
[
CT
s1
· · · CT

sp

]T
. We use the star notation to avoid writing matrices that

are either unimportant or that can be inferred from context. We use 1n to denote

a column vector of dimension n that has all its components equal to 1, and Ir to

denote an identity matrix of dimension r× r. We use N and N+ to refer to the set of

non-negative integers and the set of positive integers, respectively.
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1.3 Thesis Outline

In Chapter 2, we develop a distributed state estimation framework for the most

general class of LTI systems, sensor observation matrices, and time-invariant com-

munication graphs. In Chapter 3, we focus on developing provably correct, fully

distributed state estimation algorithms that are immune to worst-case adversarial

attacks on certain nodes of the network. In Chapter 4, we extend our distributed ob-

server framework to account for a broad class of time-varying communication graphs.

In Chapter 5, we develop a fundamentally novel distributed learning rule, establish

its consistency under minimal assumptions, prove that it leads to the fastest conver-

gence rate in the existing literature on the topic, and show that it can be easily and

efficiently extended to account for misbehaving entities in the network. In Chapter 6,

we develop communication-efficient distributed inference algorithms that guarantee

exponential convergence despite quantized communication, and a significant reduc-

tion in the number of communication rounds. In Chapter 7, we summarize the main

findings of this thesis, and identify several interesting future directions.

This work was supported in part by NSF CAREER award 1653648, and by the

Laboratory Directed Research and Development program at Sandia National Labo-

ratories.
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Part I

Distributed State Estimation

of LTI Systems
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2. DISTRIBUTED STATE AND FUNCTIONAL

OBSERVERS FOR LTI SYSTEMS

In this chapter, we first consider the problem of distributed state estimation of a

linear time-invariant (LTI) system by a network of sensors. We develop a distributed

observer that guarantees asymptotic reconstruction of the state for the most general

class of LTI systems, sensor network topologies and sensor measurement structures.

Our analysis builds upon the following key observation - a given node can recon-

struct a portion of the state solely by using its own measurements and constructing

appropriate Luenberger observers; hence, it only needs to exchange information with

neighbors (via consensus dynamics) for estimating the portion of the state that is

not locally detectable. This intuitive approach leads to a new class of distributed

observers with several appealing features. Furthermore, by imposing additional con-

straints on the system dynamics and network topology, we show that it is possible

to construct a simpler version of the proposed distributed observer that achieves the

same objective while admitting a fully distributed design phase. We then establish

the robustness of our general framework to a certain class of time-varying graphs that

are a consequence of communication losses.

In the latter half of the chapter, we focus on the problem of collaborative es-

timation of certain functionals of the state. We first show that classical existence

conditions for the design of centralized functional observers do not directly translate

to the distributed setting, due to the coupling that exists between the dynamics of

the functionals of interest and the diverse measurements at the various nodes. Ac-

cordingly, we design transformations that reveal such couplings and identify portions

of the corresponding dynamics that are locally detectable at each sensor node. We

then leverage our distributed observer design framework to allow each node to asymp-
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totically estimate the desired functionals, and identify sufficient conditions for this to

happen.

2.1 Introduction

In many applications involving large-scale complex systems (such as the power

grid, transportation systems, industrial plants, etc.), the state of the system is moni-

tored by a group of sensors spatially distributed over large sparse networks where the

communication between sensors is limited (see [24, 25]). To model such a scenario,

consider the discrete-time linear time-invariant dynamical system1

x[k + 1] = Ax[k], (2.1)

where k ∈ N is the discrete-time index, x[k] ∈ Rn is the state vector, and A ∈ Rn×n

is the system matrix. The state of the system is monitored by a network of N

sensors, each of which receives a partial measurement of the state at every time-step.

Specifically, the i-th sensor has access to a measurement of the state, given by

yi[k] = Cix[k], (2.2)

where yi[k] ∈ Rri and Ci ∈ Rri×n. We use y[k] =
[
yT1 [k] · · · yTN [k]

]T
to represent

the collective measurement vector, and C =
[
CT

1 · · · CT
N

]T
to denote the collection

of the sensor observation matrices. These sensors are represented as nodes of an

underlying directed communication graph which governs the information flow between

the sensors.

Each node is capable of exchanging information with its neighbors and performing

computational tasks. The goal of each node is to estimate the entire system state x[k]

based on its respective (limited) state measurements and the information obtained

from neighbors. This is known as the distributed state estimation problem.

1Although we consider noiseless dynamics for clarity of exposition (like [1, 26–32]), the techniques
developed in this chapter guarantee bounded mean square estimation error in the presence of i.i.d.
process and measurement noise with bounded second moments.
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In this chapter, our primary objective is to design a distributed algorithm that

guarantees asymptotic reconstruction of the entire state x[k] at each node. The

problem we study is formally stated in Section 2.2. For much of the chapter, we

will focus on developing theory for linear time-invariant systems and time-invariant

directed communication graphs. In Section 2.7, however, we shall establish that our

proposed framework can be extended to account for certain types of time-varying

networks that may arise as a consequence of intermittent communication link failures.

The chapter is organized as follows. In Section 2.2, we formally describe the

distributed state estimation problem, discuss related work and summarize our con-

tributions. Some preliminary ideas and terminology required for subsequent analysis

are presented in Section 2.3. Section 2.4 highlights the key ideas of our distributed

estimation scheme via a simple illustrative example. In Section 2.5, we solve the most

general version of the problem, whereas in Section 2.6 we provide a solution strategy

for a simpler variant of the original problem that enjoys several implementation ben-

efits. We extend our approach to account for a certain class of time-varying graphs in

Section 2.7. In Section 2.9, we generalize our results to the scenario where the nodes

are interested in estimating certain functionals of the state.

2.2 Problem Formulation

Consider the LTI system given by (2.1), the measurement model specified by (2.2),

and a predefined directed communication graph G = (V , E), where V represents the

set of N nodes (or sensors). Each node i maintains an estimate x̂i[k] of the state x[k]

of system (2.1), and updates such an estimate based on information received from its

neighbors and its local measurements (if any). To formally define the problem under

study, we use the following terminology.

Definition 2.2.1 (Distributed Observer) A set of state estimate update and in-

formation exchange rules is called a distributed observer if limk→∞ ‖x̂i[k] − x[k]‖ =
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0,∀i ∈ {1, · · · , N}, i.e., the state estimate maintained by each node asymptotically

converges to the true state of the plant.

There are various technical challenges associated with constructing a distributed

observer. First, if the pair (A,Ci) is not detectable for some (or all) i ∈ {1, · · · , N},

then the corresponding nodes cannot estimate the true state of the plant based on

their own local measurements, thereby dictating the need to exchange information

with other nodes. Second, this exchange of information is restricted by the underlying

communication graph G. With these challenges in mind, we address and solve the

following problem in this chapter.

Problem 1 Design a distributed observer for LTI systems of the form (2.1), linear

measurement models of the form (2.2), and time-invariant directed communication

graphs.

There are a variety of approaches to construct distributed observers (as defined in

Definition 2.2.1) that have been proposed in the literature, which we will now review.

After that, we will summarize how our approach differs from the existing approaches,

before delving into the details of our construction.

2.2.1 Related Work

The papers [33–35] consider distributed estimation of scalar stochastic dynami-

cal systems over general graphs; in these works, it is typically assumed that each

node receives scalar local observations, leading to local observability at every node.

The papers [36, 37] consider a version of this problem where the underlying com-

munication graph is assumed to be complete. For more general stochastic systems,

the Kalman filtering based approach to solving the distributed estimation problem

has been explored by several researchers. The approach proposed in [38–40] relies

on a two-step strategy - a Kalman filter based state estimate update rule, and a

data fusion step based on average-consensus. The stability and performance issues
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of this method have been investigated in [41, 42]. A drawback of this method (and

the ones in [34, 43, 44]), stems from the fact that they require a (theoretically) infi-

nite number of data fusion iterations between two consecutive time steps of the plant

dynamics in order to reach average consensus, thereby leading to a two-time-scale

algorithm. More recently, finite-time data fusion has been studied in [45] and [46].

Although an improvement over the infinite-time data fusion case, these methods still

rely on a two-time-scale strategy. Single-time-scale distributed filtering techniques

are proposed in [47–53]. These approaches involve LMI-based feasibility conditions

(the method in [52] requires satisfaction of certain nonlinear matrix inequalities) and

in general do not shed light on the network conditions required to satisfy such LMIs.

In [26], [27], and [31], sufficient conditions are presented for a distributed observer

to exist in undirected networks. Specifically, in [26] and [27], the authors propose a

scalar-gain estimator that runs on a single-time-scale.2 They introduce the notion of

“Network Tracking Capacity” (NTC), a measure of the most unstable dynamics (in

terms of the 2-norm of the state matrix) that can be estimated with bounded mean-

squared error under their scheme. However, the tight coupling between the network

and the plant dynamics typically limits the set of unstable eigenvalues that can be

accommodated by their method without violating the constraints imposed upon the

range of the scalar gain parameter. In [32, 54], the author approaches the observer

design problem from a geometric perspective and provides separate necessary and

sufficient conditions for consensus-based distributed observer design. In [1,28–30], the

authors use single-time-scale algorithms, and work under the broadest assumptions,

namely that the pair (A,C) is detectable, where A represents the system matrix,

and C is the collection of all the node observation matrices. In all of these works, the

authors rely on state augmentation3 for casting the distributed estimation problem

2By a single-time-scale algorithm, we imply an algorithm where each node operates at the same
time-scale as the plant, and updates its estimate and transmits information to neighbors only once
in each time-step.
3In these works, some nodes maintain observers of dimension larger than that of the state of the
plant; hence, such observers are referred to as augmented observers, and the state they estimate is
referred to as an augmented state.
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as a problem of designing a decentralized stabilizing controller for an LTI plant, using

the notion of fixed modes [55,56]. Specifically, in [1], the authors relate the distributed

observer design problem for directed networks to the detectability of certain strongly

connected clusters within the network, and provide a single necessary and sufficient

condition for their scheme.

2.2.2 Summary of Contributions

In this chapter, we provide a new approach to designing distributed observers for

LTI dynamical systems. Specifically, we use the following simple, yet key observation -

for each node, there may be certain portions of the state that the node can reconstruct

using only its local measurements. The node thus does so. For the remaining portion

of the state space, the node relies on a consensus-based update rule. The key is that

those nodes that can reconstruct certain states on their own act as “root nodes” (or

“leaders”) in the consensus dynamics, leading the rest of the nodes to asymptotically

estimate those states as well. These ideas, in a nutshell, constitute the essence of our

distributed estimation strategy.

We begin by considering the most general category of systems and graphs (taken

together) for which a distributed observer can be constructed, and develop an esti-

mation scheme that enjoys the following appealing features simultaneously, thereby

differentiating our work from the existing literature discussed in Section 2.2.1.

(i) It provides theoretical guarantees regarding the design of asymptotically stable

estimators.

(ii) It results in a single-time-scale algorithm.

(iii) It does not require any state augmentation.

(iv) It requires only state estimates to be exchanged locally.

(v) It works under the broadest conditions on the system and communication graph.
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Subsequently, for a certain subclass of systems and communication graphs, we pro-

vide a simpler fully distributed estimation scheme (at both design- and run-time) for

achieving asymptotic state reconstruction. We show that our proposed framework can

be extended to guarantee asymptotic state reconstruction in the presence of commu-

nication losses that lead to time-varying networks. Finally, we generalize our results

to the case where the nodes seek to collaboratively estimate certain functionals of the

state.

The results presented in this chapter were published as [57–59].

2.3 Preliminaries

Before we proceed with a formal analysis of the problem of designing a distributed

observer, we first identify the main consideration that shall dictate our solution strat-

egy, namely, the relationship between the measurement structure of the nodes and the

underlying communication graph. To classify sets of systems and graphs based on

this relationship, we need to first establish some notation. Accordingly, for each node

i, we denote the detectable and undetectable eigenvalues4 of A by the sets Oi and

UOi, respectively. We define σi , |Oi|. Next, we introduce the notion of root nodes.

Definition 2.3.1 (Root nodes) For each λj ∈ ΛU(A), the set of nodes that can

detect λj is denoted by Sj, and called the set of root nodes for λj.

We also recall the definition of a source component of a graph [1].

Definition 2.3.2 (Source Component) Given a directed graph G = (V , E), a source

component (Vs, Es) is defined as a strongly connected component of G such that there

are no edges from V \ Vs to Vs.

Let there be p source components of G, denoted by {(Vi, Ei)}i∈{1,··· ,p}. The subsys-

tem associated with the i-th source component is given by the pair (A,CVi). For the

4Throughout the chapter, for the sake of conciseness, we use the terminology ‘node i can detect

eigenvalue λj ’ to imply that rank
[
A−λjIn

Ci

]
= n. Each stable eigenvalue of A is by default considered

to be detectable w.r.t. the measurements of each node.
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subsequent development, it should be noted that by a system (A,C), we refer to the

matrix A in equation (2.1), and the matrix C =
[
CT

1 · · · CT
N

]T
containing each

of the measurement matrices given by (2.2). Then, we classify systems and graphs

based on the following two conditions.

Condition 1 A system (A,C) and graph G are said to satisfy Condition 1 if the sub-

system associated with every source component is detectable, i.e., the pair (A,CVi) is

detectable ∀i ∈ {1, · · · , p}.

Condition 2 A system (A,C) and graph G are said to satisfy Condition 2 if for each

unstable or marginally stable eigenvalue of the plant, there exists at least one root node

within each source component, i.e., for all i ∈ {1, · · · , p} and all λj ∈ ΛU(A), there

exists l ∈ Vi, such that rank

A− λjIn
Cl

 = n.

Note that given a source component, Condition 2 does not necessarily imply the

existence of a single node within such a component that can simultaneously detect

all the unstable and marginally stable eigenvalues of the system via its own measure-

ments.

Remark 2.3.1 It is trivial to see that if a system (A,C) and graph G satisfy Condi-

tion 2, they also satisfy Condition 1. To see that the converse is not true in general,

consider the 3-node network G in Figure 2.1, and the following model:

A =

2 0

0 2

 ,C1 =
[
1 0

]
,C2 =

[
0 1

]
,C3 =

1 0

0 1

 . (2.3)

From Figure 2.1, we see that the network has two source components, namely, the

strong component formed by nodes 1 and 2 (S1), and the isolated node 3 (S2). Clearly,

each of the pairs (A,C3) and (A,

C1

C2

) are detectable. Thus, the system is detectable

from each of the two source components. It follows that this system and graph satisfy

Condition 1. However, neither node 1 nor node 2 can detect the eigenvalue λ = 2
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LTI plant

1 2 3

y1[k]
y2[k]

y3[k]

Fig. 2.1. Example for illustrating Remark 2.3.1.

based on just their own measurements, i.e., there does not exist a root node for λ = 2

within source component S1. Thus, this system and graph do not satisfy Condition 2.

In [1], the authors identified that a distributed observer cannot be constructed

(regardless of the state update or exchange rules) if the system (A,C) and graph

G do not satisfy Condition 1. They then designed a distributed observer for the

class of systems and graphs satisfying Condition 1 by constructing augmented state

observers (i.e., observers of dimension larger than that of the system) drawing upon

connections to decentralized control theory. Here, we present an alternate and more

direct design approach, and in the process, establish that it is possible to design

a distributed observer without state augmentation for this (most general) class of

systems and graphs.5 Before we delve into the specifics of the distributed observer

design for systems and graphs satisfying Condition 1, we present a simple motivating

example which serves to build intuition for the more complicated scenarios.6
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LTI plant

1

2 3

y1[k]

LTI plant

1

2 3

y1[k]

Fig. 2.2. The graph on the left is the actual network. The graph on the
right is a DAG constructed from the original graph.

2.4 Illustrative Example

Consider a scalar unstable plant with dynamics given by x[k + 1] = 1.5x[k]. The

plant is monitored by a network of nodes, as depicted by Figure 2.2. Node 1 has a

measurement given by y1[k] = x[k], whereas nodes 2 and 3 have no measurements.

Given this plant and network model, we wish to design a distributed observer. The

commonly adopted approach in the literature is to develop a consensus-based state

estimate update rule for each node in the network [1, 26–29]. Here, we make the

following observation: since node 1 can detect the eigenvalue λ = 1.5 of the plant

based on its own measurements, it can run a Luenberger observer for estimating

x[k], without requiring information from its neighbors. Specifically, the following

Luenberger observer allows node 1 to estimate and predict the state:

x̂1[k + 1] = 1.5x̂1[k] + 1.5(y1[k]− x̂1[k]) = 1.5y1[k]. (2.4)

5The exact structure of our distributed observer presented in Section 2.5.5 illustrates that the di-
mension of the internal state/estimate x̂i[k] maintained by a given node i is equal to the dimension
of the state x[k].
6At this point, it is worth mentioning that although the distributed observer that we shall design for
systems and graphs satisfying Condition 1 will also work for systems and graphs satisfying Condition
2, we will later propose an alternate scheme with various implementation benefits for the latter class
of systems and graphs.
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Here, x̂1[k] is the estimate of x[k] maintained by node 1 at time-step k. Now sup-

pose nodes 2 and 3 update their respective estimates of x[k] as follows: x̂i[k + 1] =

1.5x̂1[k], i = 2, 3. Since limk→∞ |x̂1[k] − x[k]| = 0 based on the Luenberger observer

dynamics given by (2.4), it is easy to see that the estimates of nodes 2 and 3 also

converge to the true state x[k]. This simple example illustrates the following key

observations. (i) It is not necessary for every node in the network to run consensus

dynamics for estimating the state. More generally, a node needs to run consensus for

estimating only the portion of the state vector that is not locally detectable. The rest

of the state can be estimated via appropriately designed Luenberger observers. (ii) An

inspection of the observable subspace of each node guides the decision of participating

(or not participating) in consensus for the example we considered. For more general

system and measurement matrices, we shall rely on appropriate similarity transfor-

mations which shall reveal what a node can or cannot observe. (iii) Although node 1

is in a position to receive information from node 2, it chooses not to listen to any of

its neighbors. This pattern of information flow results in a special Directed Acyclic

Graph (DAG) of the original network, rooted at node 1. In the DAG constructed

in the illustrative example, node 1 can be viewed as the source of information for

the state x[k], and the DAG structure can be viewed as the medium for transmitting

information from the source to the rest of the network, without corrupting the source

itself (this is achieved in this example by ignoring the edge from node 2 to node 1).

Under this approach, note that every node maintains an observer of dimension 1,

which is equal to the dimension of the state (i.e., there is no state augmentation).

Based on these observations, we are now ready to extend the ideas conveyed by this

simple example for tackling more general systems and networks.7

7Notice that the original network in this illustrative example has only one source component com-
prised of the nodes 1 and 2, and node 1 is a root node for λ = 1.5 (node 1 can detect λ = 1.5). Thus,
the system and graph illustrated in this example satisfy Condition 2, and hence also Condition 1.
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2.5 Estimation Scheme for systems and graphs satisfying Condition 1

In this section, we develop a distributed observer for systems and graphs satisfying

Condition 1. For presenting the key ideas while reducing notational complexity, we

shall make the following assumption.

Assumption 2.5.1 The graph G is strongly connected, i.e., there exists a directed

path from any node i to any other node j, where i, j ∈ V.

Later, we shall argue that the development can be easily extended to any gen-

eral directed network. For now, it suffices to say that any directed graph can be

decomposed into strong components, some of which are source components (strong

components with no incoming edges from the rest of the network); the strategy that

we develop here for a strongly connected graph will be employed within each source

component.

Remark 2.5.2 Since we are focusing on systems and graphs satisfying Condition 1,

it follows that under Assumption 2.5.1, the pair (A,C) is detectable (as a strongly

connected graph is one single source component).

Remark 2.5.3 Note that under Condition 1 with a strongly connected graph, one

might consider the possibility of aggregating all the sensor measurements at a cen-

tral node and constructing a centralized Luenberger observer, leveraging the fact that

(A,C) is detectable. However, for large networks, the routing of measurement infor-

mation to and from such a central node via multiple hops would induce delays. A

distributed approach (such as the one considered in this chapter) alleviates such a

difficulty.

We are now in a position to detail the steps to be followed for designing a dis-

tributed observer for systems and graphs satisfying Condition 1. We start by pro-

viding a generalization of the Kalman observable canonical form to a setting with

multiple sensors.
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1 2 −2 −15

0 2 4 −16

0 0 3 −3

0 0 0 0


︸ ︷︷ ︸

A

T1


1 0

−188.18 1.24 6.79 −19.04

253.44 0.35 −0.08 6.16

76.18 −0.04 −0.78 3.85


︸ ︷︷ ︸

Ā1

T2


1 0

−81.42 2 0

262.1 −14.86 −7.96 12.48

84.34 −10.01 −6.99 10.96


︸ ︷︷ ︸

Ā2

T3


1 0

−81.42 2 0

10.84 0.07 3 0

266.34 −17.91 −125.33 0


︸ ︷︷ ︸

Ā=Ā3
7 −14 35 14

0 2 −8 −4

0 0 5 −5


︸ ︷︷ ︸
C=

[
CT

1 CT
2 CT

3

]T

[
1666 0 0 0

]
︸ ︷︷ ︸

C̄1

[
−364 4.47 0 0

]
︸ ︷︷ ︸

C̄2


1666 0 0 0

−364 4.47 0 0

105 2.94 41.45 0


︸ ︷︷ ︸

C̄=

[
C̄T

1 C̄T
2 C̄T

3

]T

T1 =


7 0.3430 −0.8575 −0.3430

−14 0.8996 0.2511 0.1004

35 0.2511 0.3723 −0.2511

14 0.1004 −0.2511 0.8996

 , T2 =


1 0 0 0

0 −0.611 −0.6964 −0.6569

0 −1.4724 0.6238 −0.3549

0 −1.3890 −0.3549 0.6652

 , T3 =


1 0 0 0

0 1 0 0

0 0 3.4616 0.8431

0 0 −5.4281 0.5377



Fig. 2.3. Illustration of the Multi-Sensor Observable Canonical Decomposition for a detectable pair (A,C).

2.5.1 Multi-Sensor Observable Canonical Decomposition

Given a system matrix A and a set of N sensors where the i-th sensor has an

observation matrix given by Ci, we introduce the notion of a multi-sensor observable

canonical decomposition in this section. The basic philosophy underlying such a

decomposition is as follows: given a list of indexed sensors, perform an observable

canonical decomposition with respect to the first sensor. Then, identify the observable

portion of the state space with respect to sensor 2 within the unobservable subspace

of sensor 1, and repeat the process until the last sensor is reached. Thus, one needs

to perform N observable canonical decompositions, one for each sensor, with the

last decomposition revealing the portions of the state space that can and cannot be

observed using the cumulative measurements of all the sensors. The details of the

multi-sensor observable canonical decomposition are captured by the proof of the

following result (given in Section 2.11.1).
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Proposition 2.5.1 Given a system matrix A, and a set of N sensor observation ma-

trices C1,C2, · · · ,CN , define C ,
[
CT

1 · · · CT
N

]T
. Then, there exists a similarity

transformation matrix T which transforms the pair (A,C) to (Ā, C̄), such that

Ā =



A11 0

A21 A22 0
...

...
. . .

...
...

A(N−1)1 A(N−1)2 · · · A(N−1)(N−1) 0

AN1 AN2 · · · AN(N−1) ANN 0

A1 A2 · · · A(N−1) AN AU


,

C̄ =


C̄1

C̄2
...

C̄N

 =


C11 0

C21 C22 0
...

...
...

...
...

CN1 CN2 · · ·CN(N−1) CNN 0

 .

(2.5)

Furthermore, the following properties hold: (i) the pair (Aii,Cii) is observable ∀i ∈

{1, 2, · · · , N}; and (ii) the matrix AU describes the dynamics of the unobservable

subspace of the pair (A,C).

Figure 3 illustrates the steps of the multi-sensor observable canonical decomposi-

tion for a sensor network with 3 nodes. The first step involves an observable canonical

decomposition of the pair (A,C1) via the matrix T1. Next, T2 reveals the portion

of the unobservable subspace of (A,C1) that can be observed using the observation

matrix C2. Finally, T3 reveals the portion of the unobservable subspace of (A,

C1

C2

)

that can be observed using the observation matrix C3. For this example, we have

T = T1T2T3. In the following section, we discuss how the multi-sensor observ-

able canonical decomposition is applicable to the problem of designing a distributed

observer for systems and graphs satisfying Condition 1.
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Remark 2.5.4 Note that while describing the multi-sensor observable canonical de-

composition, we did not specify any rule for indexing the sensors. This is precisely

because the technique we propose solves Problem 1 regardless of the way the sensors are

indexed, as long as the system and graph satisfy Condition 1. However, the question

of appropriately ordering the sensors (or including redundancy) will become important

when dealing with stochastic systems or with sensor failures.

2.5.2 Observer Design

Using the matrix T identified in Proposition 2.5.1, we perform the coordinate

transformation x[k] = T z[k] to obtain

z[k + 1] = Āz[k],

yi[k] = C̄iz[k], ∀i ∈ {1, · · · , N},
(2.6)

where Ā = T −1AT and C̄i = CiT =
[
Ci1 · · · Cii | 0

]
are given by (2.5). The

vector z[k] assumes the following structure (commensurate with the structure of Ā

in (2.5)):

z[k] =
[
z(1)[k]

T · · · z(N)[k]
T

zU [k]T
]T
. (2.7)

Here, zU [k] is precisely the unobservable portion of the state z[k], with respect to

the pair (A,C). We call z(j)[k] ∈ Roj the j-th sub-state, and zU [k] the unobservable

sub-state. Notice that based on the multi-sensor observable canonical decomposition,

there is a one-to-one correspondence between a node j and its associated sub-state

z(j)[k]. Accordingly, node j is viewed as the source of information of its corresponding

sub-state z(j)[k], and is tasked with the responsibility of estimating this sub-state. We

call node j the source node for sub-state j. For each of the N sub-states, we thus

have a unique source node (based on the initial labeling of the nodes). However,

there is no unique source of information for the unobservable sub-state zU [k], as this

portion of the state does not correspond to the observable subspace of any of the

nodes in the network. Each node will thus maintain an estimate of zU [k], which
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it updates as a linear function of its own estimates of each of the N sub-states

z(j)[k],∀j ∈ {1, 2, · · · , N}.

Remark 2.5.5 It should be noted that a given sub-state z(j)[k] in equation (2.7) might

be of zero dimension (i.e., the sub-state can be empty). For instance, this can happen

if its corresponding source of information, namely node j, has no measurements, i.e.,

if Cj = 0.

First, based on equations (2.5), (2.6) and (2.7), we observe that the dynamics of

the i-th sub-state are governed by the equations

z(i)[k + 1] = Aiiz
(i)[k] +

i−1∑
j=1

Aijz
(j)[k],

yi[k] = Ciiz
(i)[k] +

i−1∑
j=1

Cijz
(j)[k].

(2.8)

The reader is referred to the proof of Proposition 2.5.1 in Section 2.11.1 for a math-

ematical description of the matrices appearing in (2.8). Note that the unobservable

sub-state zU [k] is governed by the dynamics

zU [k + 1] = AUzU [k] +
N∑
j=1

Ajz
(j)[k], (2.9)

where the matrices Aj describe the coupling that exists between the unobservable

sub-state zU [k] and each of the N sub-states z(j)[k]. Define ẑ
(j)
i [k] as the estimate of

the j-th sub-state maintained by the i-th node. The estimation policy adopted by

the i-th node is as follows - it uses a Luenberger-style update rule for updating its

associated sub-state estimate ẑ
(i)
i [k], and a consensus based scheme for updating its

estimates of all other sub-states ẑ
(j)
i [k], where j ∈ {1, · · · , N} \ {i}. Based on the

dynamics (2.8), the Luenberger observer at node i is constructed as

ẑ
(i)
i [k + 1] = Aiiẑ

(i)
i [k] +

i−1∑
j=1

Aij ẑ
(j)
i [k]

+ Li

(
yi[k]−

(
Ciiẑ

(i)
i [k] +

i−1∑
j=1

Cij ẑ
(j)
i [k]

))
,

(2.10)
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where Li ∈ Roi×ri is a gain matrix which needs to be designed. For estimation of

the j-th sub-state, where j ∈ {1, · · · , N} \ {i}, the i-th node again mimics the first

equation in (2.8), but this time relies on consensus dynamics of the form

ẑ
(j)
i [k + 1] = Ajj

∑
l∈Ni

w
(j)
il ẑ

(j)
l [k]︸ ︷︷ ︸

consensus term

+

j−1∑
l=1

Ajlẑ
(l)
i [k]︸ ︷︷ ︸

coupling term

, (2.11)

where w
(j)
il is the weight the i-th node associates with the l-th node, for the estimation

of the j-th sub-state. The weights are non-negative and satisfy∑
l∈Ni

w
(j)
il = 1, ∀j ∈ {1, · · · , N} \ {i}. (2.12)

In equation (2.11), the first term is a standard consensus term, while the second term

has been introduced specifically to account for the coupling that exists between a

given sub-state j and sub-states 1 to j − 1 (as given by (2.8)). Let ẑiU [k] denote the

estimate of the unobservable sub-state zU [k] maintained by the i-th node. Mimicking

equation (2.9), each node i uses the following rule to update ẑiU [k]:

ẑiU [k + 1] = AU ẑiU [k] +
N∑
j=1

Aj ẑ
(j)
i [k]. (2.13)

In summary, equations (2.10), (2.11) and (2.13) together form the observer for the

state z[k] = T −1x[k] maintained by each node i.

2.5.3 Error Dynamics at each Node

Define e
(j)
i [k] , ẑ

(j)
i [k]− z(j)[k] as the error in estimation of the j-th sub-state by

the i-th node. Using equations (2.8) and (2.10), we obtain the error in the Luenberger

observer dynamics at the i-th node as

e
(i)
i [k + 1] = (Aii − LiCii) e

(i)
i [k] +

i−1∑
j=1

(Aij − LiCij) e
(j)
i [k]. (2.14)
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Similarly, noting that Ajj = Ajj

∑
l∈Ni w

(j)
il (based on equation (2.12)), and using

equations (2.8) and (2.11), we obtain the following consensus error dynamics at node

i, ∀j ∈ {1, · · · , N} \ {i}:

e
(j)
i [k + 1] = Ajj

∑
l∈Ni

w
(j)
il e

(j)
l [k] +

j−1∑
l=1

Ajle
(l)
i [k]. (2.15)

Define eiU [k] , ẑiU [k]− zU [k] as the error in estimation of the unobservable sub-state

zU [k] by the i-th node. Using (2.9) and (2.13), we obtain the following error dynamics

for the unobservable sub-state at node i:

eiU [k + 1] = AUeiU [k] +
N∑
j=1

Aje
(j)
i [k]. (2.16)

2.5.4 Analysis of the Estimation Scheme for Systems and Graphs Satis-

fying Condition 1

In this section, we present our main result, formally stated as follows.

Theorem 2.5.6 Consider a system (A,C) and graph G satisfying Condition 1. Let

Assumption 2.5.1 hold true. Then, for each node i ∈ {1, 2, · · · , N}, there exists a

choice of observer gain matrix Li, and consensus weights w
(j)
il , j ∈ {1, 2, · · · , N}\{i},

l ∈ Ni, such that the update rules given by equations (2.10), (2.11), and (2.13) form

a distributed observer.

Proof Consider the composite error in estimation of sub-state j by all of the nodes

in V , defined as

E(j)[k] ,



e
(j)
1 [k]

e
(j)
2 [k]

...

e
(j)
N [k]


. (2.17)

We will prove that E(j)[k] converges to zero asymptotically ∀j ∈ {1, · · · , N} (recall

that there are precisely N nodes in the network, each responsible for estimating a
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certain sub-state). We prove by induction on j. Consider the base case j = 1, i.e.,

the estimation of the first sub-state. Let the index set {1, k1, k2, · · · , kN−1} represent

a topological ordering8 consistent with a spanning tree rooted at node 1 (the source

node for sub-state 1). Note that based on Assumption 2.5.1, it is always possible to

find such a spanning tree. Next, consider the composite error vector

Ē(1)[k] =



e
(1)
1 [k]

e
(1)
k1

[k]
...

e
(1)
kN−1

[k]


=

 e
(1)
1 [k]

Ẽ(1)[k]

 , (2.18)

where Ẽ(1)[k] ,
[
e

(1)
k1

[k]
T
· · · e(1)

kN−1
[k]

T
]T
. Note that Ē(1)[k] is simply a permutation

of the rows of E(1)[k]. Based on the error dynamics equations given by (2.14) and

(2.15), we obtain e
(1)
1 [k + 1]

Ẽ(1)[k + 1]


︸ ︷︷ ︸

Ē(1)[k+1]

=

 (A11 − L1C11) 0

W1
21 ⊗A11 W1

22 ⊗A11


︸ ︷︷ ︸

M1

 e
(1)
1 [k]

Ẽ(1)[k]


︸ ︷︷ ︸

Ē(1)[k]

, (2.19)

where the entries of the weight matrix W1 =
[
W1

21 W1
22

]
are populated by the

appropriate weights defined by equation (2.15) (note that W1 ∈ R(N−1)×N and W1
21

is the first column of W1). Notice that sp(M1) = sp(A11−L1C11)∪ sp(W1
22⊗A11).

By construction, the pair (A11,C11) is observable. Thus, it is always possible to

find a gain matrix L1 such that (A11 − L1C11) is Schur stable. Next, we impose

the constraint that for the estimation of sub-state 1, non-zero consensus weights

are assigned to only the branches of the spanning tree consistent with the ordering

{1, k1, k2, · · · , kN−1}, i.e., a node listens to only its parent in such a tree. In this way,

W1
22 becomes lower triangular with eigenvalues equal to zero, without violating the

8Such an ordering results when a standard Breadth-First Search (BFS) [60] algorithm is applied to
the graph G, with node 1 as the root node of the tree. Specifically, the order represents the order in
which the nodes are added to the spanning tree when the BFS algorithm is implemented, i.e., node
k1 would be added first, followed by node k2 and so on. This ordering naturally leads to a lower
triangular adjacency matrix for the constructed spanning tree.
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stochasticity condition imposed on W1 by equation (2.12). We conclude that by an

appropriate choice of consensus weights, we can achieve ΛU(W1
22 ⊗ A11) = ∅ (even

if ΛU(A11) 6= ∅). Here, we use the result that if A ∈ Rn×n and B ∈ Rm×m, then

the eigenvalues of the Kronecker product A ⊗ B ∈ Rmn×mn are the mn numbers

λi(A)λj(B), (i = 1, · · · , n; j = 1, · · · ,m) [61].

It follows that M1 can be made Schur stable, and hence limk→∞ Ē(1)[k] = 0,

implying limk→∞E(1)[k] = 0 (one is just a permutation of the other). Thus, the

base case is proven. Next, suppose that E(j)[k] converges to zero asymptotically

∀j ∈ {1, · · · , p−1}, where 1 ≤ p−1 ≤ N−1. Consider the following composite error

vector for the p-th sub-state:

Ē(p)[k] =



e
(p)
p [k]

e
(p)
m1 [k]

...

e
(p)
mN−1 [k]


=

 e
(p)
p [k]

Ẽ(p)[k]

 , (2.20)

where the index set {p,m1,m2, · · · ,mN−1} represents a topological ordering of the

nodes of V to obtain a spanning tree rooted at node p (the source node for sub-state

p), and Ẽ(p)[k] ,
[
e

(p)
m1 [k]

T
· · · e(p)

mN−1 [k]
T
]T
. From the error dynamics equations given

by (2.14) and (2.15), we obtain

Ē(p)[k + 1] = MpĒ
(p)[k] +

p−1∑
l=1

HplĒ
(pl)[k], (2.21)

where

Mp =

 (App − LpCpp) 0

Wp
21 ⊗App Wp

22 ⊗App

 , (2.22)

Hpl = diag (Apl − LpCpl, IN−1 ⊗Apl) , (2.23)

Ē(pl)[k] =



e
(l)
p [k]

e
(l)
m1 [k]

...

e
(l)
mN−1 [k]


. (2.24)
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By following the same reasoning as the base case, one concludes that Mp can be made

Schur stable by appropriate choices of the observer gain matrix Lp, and consensus

weight matrix Wp =
[
Wp

21 Wp
22

]
(note that Wp ∈ R(N−1)×N and Wp

21 is the first

column of Wp). Specifically, non-zero weights are assigned in Wp only on the branches

of the tree rooted at node p, consistent with the topological ordering. Notice that

Ē(pl)[k] is simply a permutation of the rows of E(l)[k] (permuted to match the order

of indices in Ē(p)[k]). Further, based on our induction hypothesis, E(l)[k] converges to

zero asymptotically (since 1 ≤ l ≤ p− 1). Thus, by Input to State Stability (ISS), we

conclude that Ē(p)[k], and hence E(p)[k], converges to zero asymptotically. We have

thus proven that the composite estimation error for every sub-state asymptotically

approaches zero, i.e., limk→∞ e
(j)
i [k] = 0,∀i, j ∈ {1, · · ·N}.

Finally, consider the error in estimation of the unobservable sub-state zU [k] (given

by equation (2.16)). As the system and graph under consideration satisfy Condition

1 and Assumption 2.5.1, it must be that the pair (A,C) is detectable. Thus, based

on Proposition 2.5.1, the matrix AU in (2.16) must be stable. Invoking ISS, we

have that limk→∞ eiU [k] = 0,∀i ∈ {1, · · · , N}. Thus, every node in the network can

asymptotically estimate z[k], and hence x[k], as x[k] = T z[k].

2.5.5 A Compact Representation of the Proposed Observer

In this section, we combine the update equations (2.10), (2.11) and (2.13) to ob-

tain a compact representation of our distributed observer. To do so, we need to first

introduce some notation. Accordingly, let Bj =
[
0 · · · Ioj · · ·0

]
be the matrix that ex-

tracts the j-th sub-state from the transformed state vector z[k], i.e., z(j)[k] = Bjz[k].

Similarly, let BU be such that zU [k] = BUz[k]. Define B , diag(B1, · · · ,BN ,BU).

Next, notice that the transformed system matrix Ā in equation (2.5) can be written

as Ā = Ā1 + Ā2, where Ā2 = diag(A11, · · · ,ANN ,AU), and Ā1 is a block lower-

triangular matrix given by Ā − Ā2. Let wil (where l ∈ Ni \ {i}) be the vector of

weights node i associates with a neighbor l for the estimation of the transformed
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state z[k]. Based on our estimation scheme, note that at any given time-step k,

node i does not use the estimates received from its neighbors at time-step k for esti-

mating z(i)[k] and zU [k], and hence these weight vectors assume the following form:

wil =
[
w

(1)
il , · · · , w

(i−1)
il , 0, w

(i+1)
il , · · · , w(N)

il , 0
]T
, ∀l ∈ Ni \ {i}. Also, notice that the

element w
(j)
il is not present in the vector if the j-th sub-state is empty (i.e., of dimen-

sion 0). Similarly, let wii be a vector with a ‘1’ in the elements corresponding to the

i-th sub-state and the unobservable sub-state zU [k], and zeroes at all other positions.

Finally, defining Hi ,
[
0T · · ·Li

T · · ·0T
]T

, using equations (2.10), (2.11), and (2.13),

and noting that z[k] = T −1x[k], we obtain the following overall state estimate update

rule at node i:

x̂i[k + 1] = T Ā1T −1x̂i[k] + T Hi(yi[k]−Cix̂i[k])︸ ︷︷ ︸
innovation term

+
∑
l∈Ni

Gilx̂l[k],︸ ︷︷ ︸
“consensus term”

(2.25)

where x̂i[k] denotes the estimate of the state x[k] maintained by node i, and Gil =

T Ā2B (wil ⊗ T −1) .

Remark 2.5.7 From the structure of our overall estimator at node i, as represented

by equation (2.25), it is easy to see that the estimator maintained at each node has

dimension equal to n (i.e., equal to that of the state). Thus, our approach alleviates

the need to construct augmented observers such as those considered in [1, 30].

Remark 2.5.8 Note that all the transformation and gain matrices appearing in (2.25)

can be computed offline during a centralized design phase. Thus, although the observer

design and the subsequent analysis were done in the z[k] coordinate system, no inver-

sion from z[k] to x[k] is necessary while implementing (2.25) during run-time, i.e.,

the nodes directly exchange their estimates of the actual state x[k], and not z[k].
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2.5.6 Summary of the Estimation Scheme for Systems and Graphs Sat-

isfying Condition 1

The proposed distributed observer scheme for systems and graphs satisfying Con-

dition 1 (under the assumption that the graph G is strongly connected) can be broadly

decomposed into two main phases, namely the design phase and the distributed es-

timation phase. For clarity, we briefly enumerate the steps associated with each of

these phases.

Design Phase:

• Each node of the graph is assigned a unique integer between 1 to N . Based

on this numbering, the multi-sensor observable canonical decomposition (as

outlined in the proof of Proposition 2.5.1) is performed, yielding the state z[k] =

T −1x[k].

• Based on this transformation, each node is associated with a sub-state of z[k]

that it is responsible for estimating. Recall that there are precisely N sub-

states, one corresponding to each node in the network; some of these sub-states

might be empty.

• For the estimation of a given sub-state, we construct a spanning tree rooted at

the specific node which acts as the source of information for that sub-state. The

resulting spanning tree guides the construction of the consensus weight matrix

to be used for the estimation of that particular sub-state. We construct one

spanning tree for the estimation of each non-empty sub-state.

• Based on the constructed consensus weight matrices, and the Luenberger ob-

server gains Li, the matrices T Ā1T −1, T Hi and Gil in (2.25) are computed for

each node i ∈ V .
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Estimation Phase (Run-time):

• Each node employs a Luenberger observer for constructing an estimate of its

corresponding sub-state, and runs consensus dynamics for estimating the sub-

states corresponding to the remaining nodes in the network. Summarily, a node

implements (2.25) for estimating x[k].

Remark 2.5.9 While the observer design procedure we have outlined (involving the

multi-sensor decomposition, design of local observer gains, construction of spanning

trees and selection of consensus weights) can be readily implemented in a centralized

manner, it may also be possible to perform these steps in a distributed fashion. This

would require the nodes to assign themselves unique identifiers (or labels) and execute

the multi-sensor decomposition in a round-robin fashion, followed by a distributed

construction of spanning trees. However, at present, the multi-sensor decomposition

appears to be the most expensive portion of such an implementation (in terms of co-

ordination and communication). In Section 2.6, we show that for systems and graphs

that possess the additional structure described by Condition 2, we can avoid such a

decomposition and obtain a scheme that permits an efficient distributed implementa-

tion (in both the design and run-time phases) at the potential cost of increasing the

dimension of the observer.

Having established our approach for all systems and strongly connected graphs

satisfying Condition 1, we now briefly describe the extension of our strategy to arbi-

trary directed networks.

2.5.7 Extension to General Directed Networks

Our distributed observer design can be extended to general networks (satisfying

Condition 1 but not necessarily Assumption 2.5.1) by first decomposing G into its

strong components, and identifying each of the source components. Next, within a

given source component, one simply follows the observer design procedure outlined
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in Section 2.5.2 for a strongly connected graph, to obtain an estimator of the form

(2.25) for each node within the source component. Define S ,
⋃p
i=1 Vi to be the set

of all nodes that belong to the source components of G. Let each node in i ∈ V \ S

employ a pure consensus strategy of the form

x̂i[k + 1] = A
∑
j∈Ni

wijx̂j[k], (2.26)

where x̂i[k] represents an estimate of the state maintained by the i-th node. The

weights wij are non-negative and satisfy∑
j∈Ni

wij = 1, ∀i ∈ V \ S. (2.27)

The design of consensus weights for the nodes in V \ S is based on the observation

that the set V \ S can be spanned by a disjoint union of trees rooted in S. By

assigning consensus weights to only the branches of these trees (without violating the

stochasticity condition imposed by equation (2.27)), one obtains stable estimation

error dynamics for each of the nodes in V \ S (the details are similar to the proof of

Theorem 2.5.6). The above strategy readily leads to the following result.

Theorem 2.5.10 Consider a system (A,C) and graph G satisfying Condition 1. Let

each node in S run an observer of the form (2.25), and each node in V \ S run the

consensus dynamics given by (2.26). Then, there exists a choice of consensus weights

and observer gain matrices that results in a distributed observer.

As discussed in Remark 2.5.9, our distributed observer design starts with the

multi-sensor observable decomposition described in Proposition 2.5.1, which trans-

forms the system into a form that identifies the sub-states that each node is re-

sponsible for estimating. This decomposition requires knowledge of the measurement

matrices of each node, and thus is most amenable to a centralized implementation

(a centralized design phase is commonly assumed in the existing literature on dis-

tributed observers, e.g., [1,27–32]). In the next section, we show that for systems and

networks satisfying Condition 2, the design of the observer itself can be readily done
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in a distributed manner. However, before we conclude this section, it is instructive

to note the following.

Remark 2.5.11 (The effect of noise): For scenarios where the system and mea-

surements are affected by noise, a desirable objective is to formulate a distributed

estimation strategy that guarantees bounded mean square estimation error. As we

mention in Section 2.2.1, most of the literature that attempts to address this ques-

tion does so by either resorting to two-time-scale algorithms or LMI-based frame-

works. The only papers we are aware of that guarantee bounded mean square error

under the most general conditions on the system and network are [1] and [30] (like

our present approach, the analysis in these papers is also conducted for a noiseless

model). While the method we developed in Section 2.5 provides the same guarantees

of stability against i.i.d. noise with bounded second moments as those works,9 our ap-

proach offers the additional advantage of requiring no state augmentation. However,

the scheme that we have proposed will not, in general, be optimal in terms of mini-

mizing the mean square estimation error, due to the fact that each sub-state is directly

estimated by a single node in our multi-sensor observable decomposition, and due to

the tree structure that we construct for the rest of the nodes in the network. Extending

our approach to incorporate redundancy in order to further minimize the mean square

estimation error is an important avenue for future work. In the next section, we de-

scribe a slightly modified scheme for systems that satisfy Condition 2 given earlier in

the chapter, which allows us to assign multiple nodes to simultaneously be responsible

for estimating the same states, and facilitates the incorporation of redundancy that

can, among other things, allow resilience to node failures and attacks.

2.6 Estimation Scheme for systems and graphs satisfying Condition 2

Recall that for systems and graphs satisfying Condition 2, for each eigenvalue of

the plant, there is at least one node in each source component that can detect that

9Such guarantees are also provided by the method we develop in Section 2.6 for systems and graphs
satisfying Condition 2.
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eigenvalue. As we will show, this fact allows each node in the network to identify the

sub-states it is responsible for estimating, without having to exchange any information

with neighbors.

To this end, let T be a non-singular transformation matrix which transforms

A into its Jordan canonical form J, i.e., A = T JT −1. With z[k] = T −1x[k], the

dynamics (2.1) are transformed into the form

z[k + 1] = Jz[k],

yi[k] = C̄iz[k], ∀i ∈ {1, · · · , N}
(2.28)

where J = T −1AT and C̄i = CiT .10 Notice that this transformation relies only on

the knowledge of the system matrix A (which is assumed to be known by all of the

nodes). Hence, all nodes can perform this transformation in parallel (e.g., by using an

agreed-upon convention for ordering the eigenvalues and corresponding eigenvectors).

We denote the eigenvalues of J (which are the same as those of A) by λ1, · · · , λγ,

where γ represents the number of distinct eigenvalues of A. Let J = diag(J1, · · · ,Jγ),

where we group all of the Jordan blocks associated with λj ∈ sp(J) into the block

diagonal matrix Jj ∈ RaJ(λj)×aJ(λj). The portion of the state z[k] associated with

the eigenvalue λj is termed as the sub-state z(j)[k] ∈ RaJ(λj). Let ẑ
(j)
i [k] represent

the estimate of z(j)[k] maintained by node i. Note that if each node in the network

can accurately estimate z[k], then they can also estimate x[k] using the relation

x[k] = T z[k]. In view of this, we now develop a scheme for estimating z[k].

2.6.1 Distributed Observer Design

Design of Local Luenberger Observers

LetOi represent the set of detectable eigenvalues of node i. For estimating the sub-

states corresponding to the eigenvalues in Oi, node i constructs a simple Luenberger

10Note that the matrices T and C̄i in (2.28) are in general different from those in (2.5); we adopt
this abuse of notation to avoid cluttering the exposition with additional symbols.
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observer using its own measurements. To this end, permute the states z[k] in (2.28)

to obtain  zOi [k + 1]

zUOi [k + 1]


︸ ︷︷ ︸

z̄i[k+1]

=

J̄Oi 0

0 J̄UOi


︸ ︷︷ ︸

J̄i

 zOi [k]

zUOi [k]


︸ ︷︷ ︸

z̄i[k]

,

yi[k] =
[
C̄Oi C̄UOi

]
︸ ︷︷ ︸

C̄i

z̄i[k].

(2.29)

The permuted state z̄i[k] will be represented by z[k] = Piz̄i[k], where Pi is an appro-

priate permutation matrix. In the above equations, J̄Oi consists of all Jordan blocks

corresponding to the detectable eigenvalues of node i, and J̄UOi denotes the collection

of Jordan blocks corresponding to the undetectable eigenvalues of node i. Similarly,

C̄Oi contains the columns of C̄i corresponding to the matrix J̄Oi , with an analogous

definition for C̄UOi . The sub-states corresponding to the detectable and undetectable

eigenvalues of node i are grouped into the composite vectors zOi [k] ∈ Roi and zUOi [k]

respectively.

Based on (2.29), notice that the output yi[k] is affected by elements of zUOi [k]

(through C̄UOi) and thus we will estimate those elements as well in order to recover

zOi [k]. To this end, let T̄i be a non-singular matrix which performs an observable

canonical decomposition of the pair (J̄UOi , C̄UOi) in (2.29). Consider the following

transformation matrix:

Ti =

Ioi 0

0 T̄i

 . (2.30)
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Define the coordinate transformation z̄i[k] = Tivi[k] (this transformation is specific to

node i). Based on this transformation, and equations (2.29) and (2.30), the dynamics

at node i can be reformulated as
zOi [k + 1]

wOi [k + 1]

wUOi [k + 1]


︸ ︷︷ ︸

vi[k+1]

=


J̄Oi 0

0
GOi 0

? GUOi


︸ ︷︷ ︸

T−1
i J̄iTi


zOi [k]

wOi [k]

wUOi [k]


︸ ︷︷ ︸

vi[k]

,

yi[k] =
[

C̄Oi HOi 0
]

︸ ︷︷ ︸
C̄iTi

vi[k],

(2.31)

where

T̄−1
i J̄UOiT̄i =

GOi 0

? GUOi

 ,
C̄UOiT̄i =

[
HOi 0

]
.

(2.32)

Define

Ji , diag(J̄Oi ,GOi), Fi ,
[
C̄Oi HOi

]
, (2.33)

and si[k] ,
[
zOi

T [k] wOi
T [k]

]T
. Based on the dynamics (2.31), the local Luenberger

observer maintained by node i for estimating zOi [k] has the form

ŝi[k + 1] = Jiŝi[k] + Li(yi[k]− Fiŝi[k]), (2.34)

where Li is a gain matrix which needs to be designed for node i and ŝi[k] is the

estimate of si[k] maintained by node i. Using (2.34), ẑOi [k] can then be updated as

ẑOi [k + 1] =
[
Ioi 0

]
ŝi[k + 1].

Based on the (local) transformation (2.31) and the (local) observer (2.34), we

obtain the following result.

Lemma 2.6.1 For a system (A,C) and graph G satisfying Condition 2, let every

node i ∈ V run a Luenberger observer of the form (2.34). Then, there exists a

choice of observer gain Li, which can be designed locally, such that for each λj ∈ Oi,

limk→∞ ‖ẑ(j)
i [k]− z(j)[k]‖ = 0.
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Proof The proof follows straightforwardly by noting that (Ji,Fi) defined in (2.33)

is detectable (since J̄Oi and GOi do not share any eigenvalues, and each of the pairs

(J̄Oi , C̄Oi) and (GOi ,HOi) are detectable, by construction).

Having established that each node i ∈ V can asymptotically recover zOi [k] in

(2.29) purely locally, we now devise a method that allows each node to estimate the

sub-states corresponding to the locally undetectable eigenvalues.

Consensus dynamics

Consider an eigenvalue λj ∈ UOi (recall UOi represents the set of undetectable

eigenvalues of node i). For such an eigenvalue, node i has to rely on the information

received from its neighbors in order to estimate z(j)[k]. To this end, we propose the

following consensus strategy to be followed by every node i ∈ V \ Sj for updating

their respective estimates of z(j)[k]:

ẑ
(j)
i [k + 1] = Jj

∑
l∈Ni

w
(j)
il ẑ

(j)
l [k], (2.35)

where w
(j)
il is the weight the i-th node associates with the l-th node for the estimation

of the j-th sub-state (recall that Sj denotes the set of root nodes that can detect λj).

Each weight is non-negative and satisfies∑
l∈Ni

w
(j)
il = 1, ∀λj ∈ UOi. (2.36)

Let UOi = {λn1 , · · · , λnγi}, where γi = |UOi| = γ − σi (recall σi = |Oi|, and γ is the

number of distinct eigenvalues of A). Define Bj =
[
0 · · · Ioj · · ·0

]
as the matrix which

extracts the j-th sub-state from the state vector z[k], i.e., we have z(j)[k] = Bjz[k].

Also, let wil =
[
wn1
il · · ·w

nγi
il

]T
denote the vector of consensus weights the i-th node

assigns to the l-th node (l ∈ Ni) for the estimation of the sub-states corresponding

to each of its undetectable eigenvalues. Then, noting the definition of J̄UOi and using

the consensus equation given by (2.35), we obtain

ẑUOi [k + 1] = J̄UOiBi
∑
l∈Ni

wil ⊗ ẑl[k], (2.37)
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where Bi = diag(Bn1 , · · · ,Bγi). Noting that x[k] = T z[k], and z[k] = Piz̄i[k] (recall

z̄i[k] =
[
zOi [k]T zUOi [k]T

]T
), and using equations (2.34) and (2.37), we obtain the

governing equations of the distributed observer maintained at node i as

ŝi[k + 1] = Jiŝi[k] + Li(yi[k]− Fiŝi[k]),

ẑOi [k + 1] =
[
Ioi 0

]
ŝi[k + 1],

ẑUOi [k + 1] = J̄UOiBi
∑
l∈Ni

wil ⊗ (T −1x̂l[k]),

x̂i[k + 1] = T Pi

 ẑOi [k + 1]

ẑUOi [k + 1]

 .

(2.38a)

(2.38b)

(2.38c)

(2.38d)

Note that since T depends only on the system matrix A which is assumed to be

time-invariant, the term T −1 appearing in (2.38c) needs to be computed only once.

2.6.2 Analysis of the Estimation Scheme for Systems and Graphs Satis-

fying Condition 2

The following is the main result of this section.

Theorem 2.6.2 Consider a system (A,C) and graph G satisfying Condition 2. Then,

for each node i ∈ {1, 2, · · · , N}, there exists a choice of observer gain matrix Li, and

consensus weights w
(j)
il , ∀λj ∈ UOi, l ∈ Ni, such that the update rules given by (2.38)

form a distributed observer.

Proof Let a system (A,C) and graph G satisfy Condition 2. Consider λj ∈ ΛU(A).

Let Sj = {m1, · · · ,mτj} be the set of root nodes for eigenvalue λj, where τj = |Sj|.

Define e
(j)
mi [k] , ẑ

(j)
mi [k]− z(j)[k] as the error in estimation of the j-th sub-state by the

mi-th node. The errors in estimation of z(j)[k] for the nodes that can detect λj are

stacked into the composite error vector E
(j)
O [k], defined as

E
(j)
O [k] ,


e

(j)
m1 [k]

...

e
(j)
mτj

[k]

 . (2.39)
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Similarly, we stack the estimation errors of z(j)[k] for the nodes that cannot detect λj

into the composite error vector E
(j)
UO[k], defined as

E
(j)
UO[k] ,


e

(j)
mτj+1 [k]

...

e
(j)
mN [k]

 , (2.40)

where V \ Sj = {mτj+1, · · · ,mN} represents a topological ordering of the non-root

nodes consistent with a set of directed trees rooted at Sj, which span V \ Sj. Such a

set of trees exists based on Condition 2. Noting from (2.28) that z(j)[k+1] = Jjz
(j)[k],

and using equation (2.35), for λj ∈ UOi, the estimation error for the j-th sub-state

by the i-th node is

e
(j)
i [k + 1] = Jj

∑
l∈Ni

w
(j)
il e

(j)
l [k]. (2.41)

From (2.41), it follows that the relation between E
(j)
O [k] and E

(j)
UO[k] can be expressed

via the equation

E
(j)
UO[k + 1] =

([
Wj

11 Wj
12

]
⊗ Jj

) E
(j)
O [k]

E
(j)
UO[k]


=
(
Wj

12 ⊗ Jj
)

E
(j)
UO[k] +

(
Wj

11 ⊗ Jj
)

E
(j)
O [k],

(2.42)

where the weight matrix Wj =
[

Wj
11 Wj

12

]
contains weights based on equation

(2.41) (note that Wj ∈ R(N−τj)×N , and Wj
11 represents the first τj columns of Wj,

where τj = |Sj|). Using the same design philosophy for the consensus weights as in

Condition 1, we assign non-zero consensus weights only along the branches of the

spanning forest rooted at Sj. In this way, Wj
12 can be made lower triangular with

zero eigenvalues (without violating the stochasticity condition imposed by equation

(2.36)). We conclude that by an appropriate choice of weights as described above, we

can achieve ΛU(Wj
12 ⊗ Jj) = ∅ (even though λj ∈ ΛU(A)).

Based on Lemma 2.6.1, each node i ∈ V can locally design its observer gain

Li to stabilize the local Luenberger observer error dynamics. Specifically, the er-

ror dynamics corresponding to the estimation of z(j)[k] for each root node in Sj is
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guaranteed to asymptotically converge based on Lemma 2.6.1, i.e., the composite

error E
(j)
O [k] asymptotically converges to zero. Using ISS, we infer from (2.42) that

limk→∞E
(j)
UO[k] = 0. The same argument holds ∀λj ∈ ΛU(A). Thus, we conclude that

every node can asymptotically estimate the sub-states of z[k] corresponding to both

its detectable and undetectable eigenvalues, i.e., it can estimate the entire transformed

state z[k] asymptotically. As x[k] = T z[k], each node can asymptotically estimate

the true state x[k] as well.

Remark 2.6.3 Based on the distributed observer given by (2.38), note that the di-

mension of the observer is equal to the sum of the dimensions of the vectors ŝi[k] and

ẑUOi [k], and can be higher than the dimension of the state x[k] (as ŝi[k] can have a

dimension higher than ẑOi [k]). This augmentation is a consequence of the fact that

at present, although we are able to estimate the portion wOi [k] of the vector zUOi [k]

via the local Luenberger observer maintained at node i (given by (2.34)), we use this

information only for updating ẑOi [k], and rely on consensus for estimating the en-

tire vector ẑUOi [k] (via equation (2.38c)). This redundancy in information may be

potentially overcome using a more complicated scheme where one uses consensus for

estimating only the portion of the state corresponding to the vector wUOi [k] in equa-

tion (2.31); to avoid cluttering the exposition, we omit further investigation of this

issue here. However, for certain special cases of Condition 2 where the system ma-

trix has more structure, it may be possible to construct distributed observers without

state augmentation, using the approach proposed for Condition 2. For example, if the

system has distinct eigenvalues, then the matrix C̄UOi in (2.29) will be zero ∀i ∈ V,

thereby precluding the need for state augmentation.

2.6.3 Summary of the Estimation Scheme for Systems and Graphs Sat-

isfying Condition 2

Similar to the strategy adopted for systems and graphs satisfying Condition 1,

the distributed observer design for systems and graphs satisfying Condition 2 also
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constitutes an initialization (or design) phase which needs to be implemented just

once, followed up by an estimation phase. However, the extra structure provided by

Condition 2 allows each of these phases to be implemented in a distributed manner.

The main steps of the overall scheme are summarized as follows:

Design Phase:

• All nodes simultaneously perform a common co-ordinate transformation, which

brings the state matrix A into its Jordan canonical form. Using this form, each

node identifies its locally detectable and undetectable eigenvalues.

• For each λj ∈ ΛU(A), the nodes run a distributed algorithm (we shall discuss

such an algorithm shortly) to construct trees with roots in Sj, which span V\Sj.

These trees guide the design of the consensus weight matrices to be used for

each unstable and marginally stable eigenvalue of the system.

Estimation Phase:

• Each node uses a Luenberger observer for estimating the sub-states correspond-

ing to the detectable eigenvalues, and runs consensus dynamics for estimating

the sub-states corresponding to the undetectable eigenvalues. These dynamics

are captured by (2.38).

Construction of Spanning Trees for Consensus Weight Design

To construct directed trees rooted at nodes in Sj, which span V \ Sj, for each

λj ∈ ΛU(A), (these trees in turn guide the construction of the consensus weight

matrices) one can use standard distributed tree construction algorithms (such as

Breadth-First Search (BFS)) [62]. The essential idea behind such algorithms is that

each desired root node broadcasts a message indicating that it is a root, which is

then passed through the network. When a node first receives such a message from

a neighbor, it adopts that neighbor as its parent in the tree and rebroadcasts the

message. At the conclusion of the algorithm, all nodes are aware of their parent
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in their tree (as long as there is a path from the root node(s) to all other nodes).

For our purpose, such a distributed algorithm can be implemented by the nodes for

each λj ∈ ΛU(A), with Sj representing the roots of the tree. In this way, for each

λj ∈ ΛU(A), a node in V \Sj will identify its parent node in one of the directed trees

rooted at Sj, and as discussed in the proof of Theorem 2.6.2, will assign a non-zero

consensus weight to only this parent node for the estimation of z(j)[k].

Note that the simpler distributed observer scheme developed for systems and

graphs satisfying Condition 2 may not always be applicable to systems and graphs

satisfying Condition 1. To see this, consider the system and graph given by equation

(2.3) and Figure 2.1, which satisfies Condition 1 but not Condition 2. As pointed out

in Remark 2.3.1, the only root node that can detect the unstable eigenvalue λ = 2

belongs to the source component comprised of the isolated node 3. To implement

the scheme developed for systems and graphs satisfying Condition 2, one needs to

construct a tree rooted at node 3 which spans nodes 1 and 2. This is clearly not

possible for this particular network; hence the method developed for Condition 2 is

not applicable to this system and graph. In this case, the general distributed observer

framework developed for systems and graphs satisfying Condition 1 would still apply,

however.

2.7 Robustness to Communication Losses

In this section, we discuss how the general framework for distributed observer

design that we have described thus far (the idea of using Luenberger observers for

estimating the locally detectable states and consensus dynamics for the remaining

states) can be extended to account for time-varying communication graphs that are a

consequence of communication link failures. We only perform the analysis for systems

and networks satisfying Condition 1, since similar arguments will hold for Condition

2 as well. We consider a scenario where the network varies with time due to failure or

recovery of subsets of edges of the baseline graph G. We denote this class of switching
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signals by Ω. Under the class of switching signals Ω, the time-varying communication

graph is denoted by Gσ(k) = (V , Eσ(k)), where σ(k) is a finite index set representing the

different switching modes, and Eσ(k) ⊆ E (recall that E represents the set of edges of

the baseline graph G). For the rest of the analysis in this section, we assume that the

baseline communication graph G is strongly-connected, i.e., G is strongly-connected

in the absence of link failures.

We make two minor modifications to our original estimation strategy (refer to

Section 2.5.6) to account for communication losses. First, during the design phase,

for estimation of a given sub-state, we construct a spanning directed acyclic graph

(DAG) (instead of a spanning tree) rooted at the corresponding source node to allow

for the possibility of having redundant communication links. Accordingly, in the

DAG constructed for estimation of sub-state j (where j ∈ {1, · · · , N}), let the set of

parent nodes for node i be denoted by P(j)
i . Second, for estimating the j-th sub-state,

where j ∈ {1, · · · , N} \ {i}, the i-th node does the following: if at a certain time-

step it receives information from only a proper subset of its parent set P(j)
i , then it

still employs equation (2.11), redistributing the weights among such a subset so as to

preserve the stochasticity constraint imposed by (2.12). For the more critical scenario

where node i gets disconnected from all its parents in the set P(j)
i at a given time-step

k, it updates ẑ
(j)
i [k] using previous values of its own estimates in the following way:

ẑ
(j)
i [k + 1] = Ajj ẑ

(j)
i [k] +

j−1∑
l=1

Ajlẑ
(l)
i [k]. (2.43)

A direct consequence of the update rule (2.43) is that the matrix Ajj, which may

be unstable, appears in the block diagonal position corresponding to node i in the

lower block triangular error dynamics matrix Mj given by (2.22). Notice also that

for a given node i, the observer update equations (2.10) and (2.13) are unaffected

by changes in the network structure. To proceed with our analysis, we make the

following assumption on the class of switching signals Ω.

Assumption 2.7.1 The class of switching signals Ω has the following property: there

exists a positive integer T such that in every time interval of the form [kT, (k+ 1)T ),
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where k ∈ N, for each sub-state j ∈ {1, · · · , N}, for every node i ∈ V \ {j}, there

exists an integer l ∈ [kT, (k + 1)T ) such that Gσ(l) contains an edge from at least one

node in P(j)
i to node i.11

In words, Assumption 2.7.1 simply implies that within each interval [kT, (k+1)T ), for

each sub-state j, every non-source node V \ {j} is guaranteed to receive information

from at least one of its parents in P(j)
i at least once over the entire interval. With

this in mind, we now state the main result of this section.

Theorem 2.7.2 Consider a system (A,C) and a strongly-connected baseline com-

munication graph G satisfying Condition 1. Suppose the class of switching signals Ω

satisfies Assumption 2.7.1. Then, equations (2.10), (2.11) with time-varying weights,

(2.13) and (2.43) form a distributed observer.

The proof is provided in Section 2.11.2.

Remark 2.7.3 The conditions in Theorem 2.7.2 allude to the preservation of certain

information flow patterns over contiguous, non-overlapping bounded time intervals

and in the process inform the judicious placement of redundant communications links

for augmenting network robustness against communication failures. If such conditions

are met, then the strategy described in this section can be used to deal with intermittent

communication losses without the need for a redesign of the estimation scheme on the

fly. However, such a redesign cannot be avoided if one of the sensors involved in the

multi-sensor observable canonical decomposition described in Section 2.5.1 fails. This

is a limitation of the scheme proposed for systems and graphs satisfying Condition

1; such a limitation is likely to be a shortcoming of the existing distributed observer

constructions [1,27–32] as well, since they typically involve a centralized design phase

and do not account for node or link failures.

Remark 2.7.4 While the foregoing discussion focused on transient communication

failures, permanent communication failures can also be accommodated within our

11Note that within a given interval of the form [kT, (k + 1)T ), for a specific sub-state j, l might be
different for the different non-source nodes in V \ {j}.
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LTI plant

1 2 3

y1[k]
y2[k]

Fig. 2.4. Network topology for the example system considered in Sec-
tion 2.8.

framework in the following way. Suppose a non-source node i for a certain sub-

state gets disconnected from all its parent nodes in the baseline graph G at a certain

time-step. If G is undirected and remains connected after such faults, then node i

can broadcast the fault status back to the corresponding source node, thereby initiating

the construction of a new tree that retains information flow from the source to node

i. Such trees can easily be constructed in a distributed manner using standard tech-

niques [62] similar to the one outlined earlier in Section 2.6.3. The non-source nodes

can then re-adjust their consensus weights based on the new tree and employ (2.11)

as earlier. Note that the above strategy would also apply to permanent sensor fail-

ures provided such sensors are not involved in the multi-sensor observable canonical

decomposition.12
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dynamics for the second state. (Bottom left) Error dynamics for the third
state.
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2.8 Example

In this section, we present an example to illustrate the scheme developed for

Condition 1. To this end, consider the network shown in Figure 2.4, and the associated

system and measurement matrices given by

A =


1 0 0

2 2 0

−5 0 2

 ,C1 =
[
4 4 1

]
,C2 =

11 13 3

16 18 4

 ,C3 = 0. (2.44)

Note that the system is not detectable from any individual node. It can be verified

that the pair (A,

C1

C2

), associated with the source component comprised of nodes

1 and 2, is observable. Hence, the scheme developed for Condition 1 is applicable to

this setting. To implement the multi-sensor observable canonical decomposition, we

start by bringing the pair (A,C1) to the observable canonical form. This is achieved

using

T1 =


4 7 0

4 8 −0.2425

1 2 0.9701

 . (2.45)

Since (A,

C1

C2

) is observable, in this specific case, we have A22 = A1U and A2U = 0

(here we use notations consistent with the ones described in the proof of Proposition

2.5.1 in Section 2.11.1). Thus, we have T2 = I3 and T = T1T2 = T1. Using T , we

perform the multi-sensor observable canonical decomposition to obtain

Ā =

−10.9412 −22.6471 0
6.8235 13.9412 0
−21.3431 −37.3505 2

 , C̄1 =
[

33 62 0
]
, C̄2 =

[
99 187 −0.2425
140 264 −0.4851

]
.

(2.46)

12Clearly, for an undirected baseline graph that is initially k-connected, k − 1 permanent com-
munication faults can be accounted for in the aforementioned manner. In fact, k − 1 permanent
sensor failures could also be handled if such sensors are not involved in the multi-sensor observable
decomposition.
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Based on the above decomposition, and the theory developed for Condition 1, it is

easy to see that the transformed state z[k] = T −1x[k] will contain two sub-states

and the unobservable sub-state will be of zero-dimension. The local Luenberger ob-

server gains are chosen as L1 =
[
−4.6404 2.5174

]T
and L2 =

[
−1.641 −3.282

]
.

Noting that node 1 is responsible for estimating sub-state 1, and node 2 for sub-state

2, the consensus weight vectors used by the two nodes are w11 =
[
1 0

]T
,w12 =[

0 1
]T
,w21 =

[
1 0

]T
, and w22 =

[
0 1

]T
. Section 2.5.5 provides a description

of these weight vectors. Using these design parameters, nodes 1 and 2 maintain the

following estimators of the form (2.25):

x̂1[k + 1] = Nx̂1[k] + T H1 (y1[k]−C1x̂1[k]) + G11x̂1[k] + G12x̂2[k],

x̂2[k + 1] = Nx̂2[k] + T H2 (y2[k]−C2x̂2[k]) + G21x̂1[k] + G22x̂2[k],

where

N =


0 0 0

1.29 0 0

−5.18 0 0

 , T H1 =


−0.94

1.58

0.39

 , T H2 =


0 0

0.40 0.80

−1.59 −3.18

 ,

G11 = G21 =


1 0 0

0.71 1.88 0.47

0.18 0.47 0.12

 ,G12 = G22 =


0 0 0

0 0.12 −0.47

0 −0.47 1.88

 .
Since node 3 does not belong to any source component, it simply runs a pure consensus

strategy given by x̂3[k + 1] = Ax̂2[k]. Note that all nodes maintain observers of

dimension 3. For simulations, x[0] =
[
0.5 −0.5 1

]T
, and the initial estimates of all

three nodes are set to 0. Figure 2.5 shows the evolution of the estimation errors (in

these plots, the notation e
(j)
i is used to denote the error in estimation of state j by

node i) and validates the scheme developed for Condition 1.

2.9 Distributed Functional Observers

Consider a scenario where each node in the network is interested in tracking the

evolution of the functional 1Tnx[k], i.e., each node is interested in estimating the sum of
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the states of the system. Of course, this can trivially be achieved by first estimating

the entire state vector and then computing the sum of its components. However,

given the modest objective, this approach can be computationally prohibitive for

systems with several states. The above discussion leads to the following question:

Is it possible to reduce the online computations per node based on an alternate

approach? Answering this question formally is the subject of this section. To this

end, suppose the goal of each node is to estimate ψ[k], where

ψ[k] = Lx[k]. (2.47)

Here, L ∈ Rr×n is a full row-rank matrix (without loss of generality); hence ψ[k]

represents r linearly independent functionals of the state.13 While there is a rich body

of literature that looks at the centralized functional observer design problem (see [63,

64]), we are unaware of any work that investigates the distributed counterpart based

on the model considered here. In [65], the authors develop a partially distributed

functional observer scheme for coupled interconnected LTI systems, where each sub-

system maintains an observer for estimating functionals of the state corresponding

to that particular sub-system. However, the model and problem formulation in [65]

differs from the one considered in this chapter. A key point of difference is that

in [65], the impact of the underlying communication graph does not play a role in the

design strategy, whereas our approach focuses on analyzing the interplay between the

system dynamics and the network topology.

The main contribution of this section is a distributed algorithm that guarantees

asymptotic reconstruction of ψ[k] at each sensor node, under certain conditions on

the system dynamics and network topology.

13When L is the identity matrix (or more generally a square non-singular matrix), we recover the
distributed state estimation problem studied earlier in this chapter.
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2.9.1 Problem Formulation

Consider the LTI system given by (2.1), the measurement model specified by (2.2),

the functionals of interest described by (2.47), and a predefined directed communica-

tion graph G = (V , E) where V represents the set of N nodes (or sensors). Let ψ̂i[k]

denote the estimate of ψ[k] maintained by node i. Given this setting, the problem

studied in this section is formally stated as follows.

Problem 2 (Distributed Functional Estimation Problem) For the model spec-

ified by equations (2.1), (2.2), (2.47) and a predefined communication graph G, design

a distributed algorithm that achieves limk→∞ ‖ψ̂i[k]−ψ[k]‖ = 0,∀i ∈ {1, · · · , N}.

Remark 2.9.1 As long the system is globally detectable, i.e., the pair (A,C) is de-

tectable, and the communication graph G is strongly connected, a trivial way to solve

Problem 2 is to reconstruct the entire state x[k] at every sensor node based on any

of the existing distributed state estimation techniques in [1, 30, 58]. Our goal in this

section will be to design observers that are in general of order14 smaller than the

dimension of the state x[k]. For more on this issue, refer to Remark 2.9.7.

A distributed algorithm that solves the above problem will be called a distributed

functional observer. Note that in general it may not be possible for a given node i

to estimate ψ[k] by solely relying on its own measurements,15 thereby dictating the

need to exchange information with its neighbors. In the next section, we show that

existing results/techniques for the centralized version of the problem are not directly

applicable to the problem under consideration.

14By the order of an observer at a given sensor node, we refer to the dimension of the portion of the
state that is dynamically estimated at that node, i.e., the portion that is not obtained directly from
the measurements of the node under consideration.
15This is precisely the case when ψ[k] is a linear function of some states that are undetectable with
respect to the measurements of node i; for related notions of ‘Functional Observability’, see [66,67].



56

2.9.2 Motivation

The purpose of this section is to illustrate that classical existence conditions for

the design of centralized functional observers (of a given order) do not generally hold

in a distributed setting, and in the process, motivate our present work. To this end, we

first recall the following necessary and sufficient conditions set forth by Darouach [63]

for the existence of a centralized functional observer of order r, where r = rank L:

(i)

rank


LA

CA

C

L

 = rank


CA

C

L

 , (2.48)

(ii)

rank


sL− LA

CA

C

 = rank


CA

C

L

 , ∀s ∈ C, |s| ≥ 1. (2.49)

Next, consider the following model, where the system is monitored by a network of

nodes, as depicted by Figure 2.6:x(1)[k + 1]

x(2)[k + 1]


︸ ︷︷ ︸

x[k+1]

=

1
2

2

0 3


︸ ︷︷ ︸

A

x(1)[k]

x(2)[k]


︸ ︷︷ ︸

x[k]

,

L =
[
1 0

]
,C1 =

[
0 1

]
,C2 = C3 = 0. (2.50)

The objective is to asymptotically estimate x(1)[k] at each of the three sensor nodes.

It is easy to verify that the necessary and sufficient conditions (equations (2.48) and

(2.49)) for the existence of a centralized 1st order functional observer are satisfied by

the model (2.50) with C =
[
CT

1 CT
2 CT

3

]T
. At this point, the natural inclination

is to ascertain whether it is possible for each sensor node to asymptotically estimate

x(1)[k] via 1st order estimators. To formally answer this question, we need to impart
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y1[k]

Fig. 2.6. Example for illustrating Proposition 2.9.1.

some structure to the distributed observers under consideration. To this end, consider

distributed observers of the form16

x̂
(1)
i [k + 1] = αi

∑
j∈Ni

wijx̂
(1)
j [k] + βi

∑
j∈Ni

yj[k], (2.51)

where x̂
(1)
i [k] is the estimate of state x(1)[k] maintained by node i at time-step k,

and αi, βi, wij are free design parameters at node i. Moreover, the weights wij are

non-negative and satisfy
∑

j∈Ni wij = 1, i ∈ {1, 2, 3}. We have the following simple

result.

Proposition 2.9.1 For the model given by (2.50), and the corresponding network

depicted by Figure 2.6, it is impossible for node 3 to estimate the function Lx[k] =

x(1)[k] using a 1st order observer that has structure given by (2.51).

Proof Let ei[k] = x̂
(1)
i [k] − x(1)[k] denote the error in estimation of state x(1)[k] at

node i. Based on (2.50), we have x(1)[k + 1] = αx(1)[k] + βy1[k] where α = 1
2
, β = 2

16The choice of this observer structure is inspired by the fact that standard distributed state observers
existing in literature are essentially of this form.
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and y1[k] = x(2)[k]. Then, using (2.51) and some straightforward algebra, we obtain

the following error dynamics:
e1[k + 1]

e2[k + 1]

e3[k + 1]


︸ ︷︷ ︸

e[k+1]

=


α1w11 0 α1w13

α2w21 α2w22 0

0 α3w32 α3w33


︸ ︷︷ ︸

M


e1[k]

e2[k]

e3[k]


︸ ︷︷ ︸

e[k]

(2.52)

+


(α1 − α)

(α2 − α)

(α3 − α)


︸ ︷︷ ︸

B1

x(1)[k] +


(β1 − β)

(β2 − β)

−β


︸ ︷︷ ︸

B2

y1[k].

To achieve limk→∞ e[k] = 0 regardless of the initial conditions and the trajectories

of x(1)[k] and x(2)[k], we require M to be Schur stable and B1 and B2 to be zero. To

obtain B1 = 0, we must set α1 = α2 = α3 = α. However, it is impossible to set B2 to

zero due to the non-zero coupling term β between the functional of interest x1[k] and

the measurement y1[k] = x2[k]. Based on the unstable dynamics of y1[k] (see (2.50)),

it follows that no choice of free design parameters at the various nodes can guarantee

limk→∞ e3[k] = 0.

Remark 2.9.2 For the sake of illustration, we considered the observer model given

by (2.51). However, it should be noted that given the plant and measurement model

(2.50), and the network depicted by Figure 2.6, adding more free design parameters

to the observer structure will not change the result of Proposition 2.9.1.

To see why Darouach’s conditions do not generally hold in a distributed setting,

let us take a closer look at the rank condition (2.48). We see that (2.48) implies the

existence of matrices M1,M2,M3 (not necessarily unique) such that LA = M1L +

M2C+M3CA. Thus, referring to equations (2.1), (2.2) and (2.47), we have ψ[k+1] =

M1ψ[k] + M2y[k] + M3y[k + 1]. Since the dynamics of ψ[k] are coupled to the

measurements that are directly available in a centralized setting (and hence require

no estimation), it suffices to maintain a dynamic estimator of order equal to the length



59

of the vector ψ[k]. However, in a distributed setting, the entire measurement vector

y[k] is no longer accessible at a single sensor node, thereby precluding the direct use

of a centralized functional observer design.

At this stage, it should be pointed out that even if Darouach’s conditions are not

met, it is still possible to construct minimal order centralized functional observers

of order greater than r [64]. However, based on the discussion in this section, to

isolate the challenges introduced by the distributed setting, we restrict our attention

to tuples (A,C,L) that allow for the construction of r-th order centralized functional

observers and additionally possess certain extra structure (to be discussed later).

Note that the notion of a ‘minimal order distributed functional observer’ is not clearly

defined: one may require all nodes to maintain observers of the same order and seek

to minimize such an order. Alternatively, one may allow the nodes to maintain

observers of different orders and seek to minimize the average order (there might be

other possible interpretations as well). In this section, we stick to the former notion

and develop a distributed functional estimation strategy that requires all nodes to

maintain observers of the same order that is in general smaller than the dimension

of the state x[k]. However, the problem of defining and subsequently obtaining a

minimal order distributed functional observer remains open.

For the problem under consideration, since the dynamics of ψ[k] are coupled

with the measurements that are no longer co-located, it becomes necessary for the

sensor nodes to maintain estimates of each others’ measurements in order to estimate

ψ[k].17 Building on this intuition, we introduce the notion of ‘functional leader sets ’

in the following section, and investigate how the dynamics of the functionals ψ[k] are

coupled to the measurements of such a set of nodes via an appropriately designed

similarity transformation.

17This is illustrated by the system considered in Proposition 2.9.1 where the functional of interest,
namely x(1)[k], is coupled to the state measured by node 1. Hence, nodes that are not immediate
neighbors of node 1 (like node 3) need to maintain estimates of y1[k] in order to estimate x(1)[k].
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2.9.3 Functional Leader Sets

Before formally defining a functional leader set, we need to first introduce some

terminology. To this end, note that by a row sub-matrix C̄S of CS , we imply that

C̄S contains a non-empty (not necessarily proper) subset of the rows of CS , i.e.,

R(C̄S) ⊆ R(CS). Consider the following definitions.

Definition 2.9.1 (Feasible Leader Set) A set of nodes S ⊆ V is called a feasible

leader set if there exists at least one row sub-matrix C̄S of CS satisfying the following

two conditions:

(i)

rank


LA

C̄SA

L

C̄S

 = rank

 L

C̄S

 , (2.53)

(ii)

rank

s
 L

C̄S

−
 L

C̄S

A

C̄S

 = rank

 L

C̄S

 , ∀s ∈ C, |s| ≥ 1. (2.54)

Definition 2.9.2 (Minimal Leader Set) A set S is called a minimal leader set if

S is a feasible leader set and no subset of S is a feasible leader set. A feasible leader

set S with |S| = 1 is considered to be minimal by default.

Given a minimal leader set S, if there are several row sub-matrices of CS that

satisfy conditions (2.53) and (2.54), denote the row sub-matrix that produces the

lowest rank of
[
LT C̄T

S

]T
by CSmin and the corresponding rank by rSmin . Let the

set of all feasible leader sets be denoted by F and the set of all minimal leader sets

be denoted by M = {S(1), · · · ,S(l)}, where l = |M|. The tuples characterizing the

minimal leader sets are given by {(CS(1)
min
, rS(1)

min
), · · · , (CS(l)

min
, rS(l)

min
)}.
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Definition 2.9.3 (Functional Leader Set) A set S(i) ∈ M is referred to as a

functional leader set if rS(i)
min
≤ rS(j)

min
∀j ∈ {1, · · · , l} \ {i}.

Thus, a functional leader set is a minimal leader set that yields the lowest rank

on the R.H.S. of equation (2.53) among all minimal leader sets. Given any tuple

(A,C,L) described by (2.1), (2.2), (2.47), if F is non-empty, then it is easily seen

that M is also non-empty and hence we are guaranteed the existence of at least

one functional leader set. If there are multiple functional leader sets, it suffices to

pick any one for our subsequent analysis since all such sets will essentially lead to

distributed functional observers of the same order. Thus, if F is non-empty, we pick

any functional leader set and denote it by S?. For notational simplicity, we denote

the tuple characterizing S? by (C?, r?). The nodes in S? are referred to as functional

leader nodes and it will be subsequently shown that such nodes play a key role in

solving Problem 2.

Remark 2.9.3 Roughly speaking, it will soon be apparent that any set of sensor nodes

belonging to F (and hence M) can effectively serve as ‘leaders’ in the consensus

dynamics for estimating the functionals of interest, thereby justifying the proposed

terminology. Furthermore, if set S(i) ∈ M is chosen as the leader set, then our

design would result in every node maintaining a distributed functional observer of

order rS(i)
min

. The definition of a functional leader set 18 is thus motivated by the goal

of obtaining the distributed functional observer of minimal order among all feasible

leader sets.

Before proceeding further, we illustrate some of the concepts introduced in this

section via the following model:

A =


0 2 0

3 0 0

0 0 5

 ,C1 =

0 1 0

0 0 1

 ,L =
[
1 0 0

]
. (2.55)

18Given a tuple (A,C,L) described by (2.1), (2.2) and (2.47), the design of an algorithm that finds
a functional leader set S? (provided F is non-empty), and the subsequent analysis of its complexity,
are interesting avenues of future research.
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Clearly, S = {1} is a minimal leader set with C1 satisfying both the rank conditions

(2.53) and (2.54). However, these conditions are also satisfied by the row sub-matrix

formed by considering just the first row of C1. While considering the entire C1 will

lead to a distributed functional observer of order 3, considering only its first row will

lead to an observer of order 2 using our design methodology. Given a minimal leader

set S, the foregoing discussion motivates the need to check whether sub-matrices of

CS satisfy the conditions (2.53) and (2.54).19 With A and L as described in (2.55),

suppose we had C1 =
[
0 1 0

]
and C2 =

[
0 0 1

]
. Then, S = {1, 2} would be

a feasible (but not minimal) leader set, S = {1} would be a minimal leader set and

S = {2} would not be a feasible leader set.

The following property of the functional leader set S? will be critical in our sub-

sequent design.20

Lemma 2.9.4 Given a tuple (A,C,L) described by (2.1), (2.2) and (2.47) such that

F is non-empty, let the functional leader set S? be characterized by the tuple (C?, r?)

with p denoting the number of rows of C?. Then, there exists a similarity transfor-

mation matrix T that brings (A,C?) to the following form:

Ā =

AD 0

AE AF

 , C̄ =
[
CD 0

]
, (2.56)

where AD ∈ Rr?×r?, CD ∈ Rp×r?. Furthermore, the following properties hold: (i) the

state vector corresponding to the matrix AD has the functionals of interest ψ[k] as

its first r components, and a subset of measurements corresponding to the matrix C?

as the remaining r? − r components; and (ii) the pair (AD,CD) is detectable.

Proof By definition, since S? is a feasible leader set, the rank conditions (2.53) and

(2.54) are satisfied by C̄S? = C?. In particular, based on the rank condition (2.53), it

19Intuitively, we see that the state of interest, namely state 1, is coupled only to the second state.
Hence, the extra information about the third state provided by the second row of C1 is irrelevant in
the present context. Based on this discussion, note that our approach ensures that the order of the
proposed distributed functional observer is in general smaller than the dimension of the detectable
subspace of the pair (A,C), where C represents the collective observation matrix.
20Clearly, any feasible leader set possesses a similar property; the rationale behind considering the
functional leader set in particular is made apparent by Remark 2.9.3.
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is easy to see that R(
[
LT C?T

]T
) is AT -invariant. Define Σ ,

[
LT C̃?

T
]T

, where

C̃? contains all the linearly independent rows of C? that are also linearly independent

of the rows of L. Noting that rank Σ = r?, it follows that there exists a matrix

AD ∈ Rr?×r? such that

ΣA = ADΣ. (2.57)

Let us define a non-singular transformation matrix as T ,
[
ΣT VT

]T
, where the

rows of V ∈ R(n−r?)×n represent an orthogonal basis for the null space of Σ. Using

(2.57), we then conclude that

TA =

ΣA

VA

 =

ADΣ

VA

 =

[AD 0
]

T

VAT−1T

 . (2.58)

By partitioning the (n − r?) × n matrix VAT−1 as VAT−1 =
[
AE AF

]
, where

AE ∈ R(n−r?)×r? and AF ∈ R(n−r?)×(n−r?), we further obtain

TA =

AD 0

AE AF

T. (2.59)

Next, note that R(C?) ⊆ R(Σ). Hence, there exists a matrix CD ∈ Rp×r? such that

C? = CDΣ. (2.60)

Noting that ΣT−1 =
[
I 0

]
, and using (2.60), we see that

C?T−1 =
[
CD 0

]
. (2.61)

Defining Ā , TAT−1, C̄ , C?T−1, and using (2.59) and (2.61), we obtain (2.56). It

remains to show that (2.54) implies detectability of the pair (AD,CD). To this end,

note that the unique solutions to (2.57) and (2.60) are given by AD = ΣAΣ† and

CD = C?Σ†, respectively. Based on the PBH test, the pair (AD,CD) is detectable if

and only if

rank

sI −ΣAΣ†

C?Σ†

 = r?, ∀s ∈ C, |s| ≥ 1. (2.62)
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Since
[
Σ† I−Σ†Σ

]
is full row-rank, it follows that

rank

sΣ −ΣA

C?

 = rank

sΣ −ΣA

C?

[Σ† I −Σ†Σ
]

= rank

sI −ΣAΣ† 0

C?Σ† 0

 .
(2.63)

The last equality follows by noting that the matrix (I−Σ†Σ) projects onto the null

space of Σ, and that R(ΣA), R(C?) are both contained in R(Σ). Finally, combining

(2.54), (2.62) and (2.63) leads to the desired result.

Remark 2.9.5 Note that Lemma 2.9.4 does not describe a standard detectable de-

composition of the pair (A,C?). In fact, the dimension of the square matrix AD,

namely r?, is in general smaller than the dimensions of the detectable subspaces of

the pairs (A,C?), (A,CS?) and (A,C).

Based on (2.56), we obtain the following dynamics:

φ[k + 1] = ADφ[k], ȳ[k] = CDφ[k], (2.64)

where φ[k] =
[
Ir? 0

]
Tx[k] = Σx[k], ȳ[k] represents measurements of the sensor

nodes in S? corresponding to the matrix C?, i.e., ȳ[k] = C?x[k], and AD, CD,

Σ =
[
LT C̃?

T
]T

are as described by Lemma 2.9.4. In particular, note that the

first r states of the vector φ[k] represent the functionals of interest, namely ψ[k].

Effectively, we have converted the distributed functional estimation problem to the

problem of designing a full-order distributed state observer for the state φ[k] described

by (2.64). Thus, if the pair (AD,CD) is detectable, one can leverage the distributed

observer design approach developed earlier in the chapter to enable each node to

recover φ[k], and hence ψ[k]. The above discussion immediately leads to the main

result of this section.

Theorem 2.9.6 Given a tuple (A,C,L) described by equations (2.1), (2.2), and

(2.47), and a strongly-connected communication graph G, let the feasible leader set
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F described by Definition 2.9.1 be non-empty. Then, the proposed distributed func-

tional observer described by the update equations (2.10), (2.11), and (2.13) solves

Problem 2.

Proof Since F is non-empty, there exists a functional leader set S?. Based on the

property of S? described by Lemma 2.9.4, the pair (AD,CD) governing the dynamics

of φ[k] (see (2.64)) is detectable. Since G is strongly-connected, one can use the

distributed observer design approach outlined in Section 2.5.2 to enable each node in

V to asymptotically estimate φ[k]. Noting that the desired functionals ψ[k] satisfy

ψ[k] =
[
Ir 0

]
φ[k] completes the proof.

Remark 2.9.7 Note that the order of the proposed distributed functional observer is

r? where r ≤ r? ≤ d in general, with r = rank (L) and d equal to the dimension

of the detectable subspace of the pair (A,C) given by (2.1) and (2.2).21 The fact

that r? ≥ r follows from the discussion in Section 2.9.2. For the special case when

R(C?) ⊆ R(L), we have r? = r. Further, when the tuple (A,C,L) is ‘functionally

observable’ [66], i.e., when the functionals of interest are linear combinations of only

the observable states of (A,C), it is easily seen that the order of the proposed observer

is no greater than the dimension of the observable subspace of (A,C).

Remark 2.9.8 Note that when L = In, the rank condition (2.53) is trivially satisfied

whereas (2.54) boils down to the existence of a set of nodes S ∈ V such that the

pair (A,CS) is detectable. For a strongly connected graph G, it was shown earlier in

the chapter (and in [1,30]) that the necessary and sufficient condition for distributed

state estimation is the detectability of the pair (A,C). Thus, it is apparent that for

a strongly connected graph G, the sufficient condition presented in this section for

the construction of a distributed functional observer, namely that the feasible leader

set F is non-empty, is in fact a generalization of the aforementioned necessary and

sufficient condition for distributed state estimation.

21Note that if F is non-empty, then a centralized functional observer of order r can always be
constructed.
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2.10 Chapter Summary

In this chapter, we first considered the problem of distributed state estimation

of an LTI system by a network of nodes. We introduced a new class of distributed

observers for the most general class of LTI systems, time-invariant directed commu-

nication graphs, and linear sensor measurement structures. This was achieved by

extending the Kalman observable canonical decomposition to a setting with mul-

tiple sensors, i.e., by introducing the notion of a multi-sensor observable canonical

decomposition.

We also demonstrated that for certain subclasses of system dynamics and net-

works, one can design a distributed observer via a simpler estimation scheme which

enjoys the benefit of a fully distributed design phase. We then discussed how our

proposed framework can be extended to account for communication failures. The

main underlying theme of our work is built upon the following intuition: portions of

the state space can be reconstructed by a node using its own local measurements,

and hence it needs to run consensus for only the portion of the state space that is

not locally detectable. In the latter half of the chapter, we generalized our results to

address the problem of distributed functional estimation.
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2.11 Omitted Proofs

2.11.1 Proof of Proposition 2.5.1

Proof We outline the sequence of transformations that need to be carried out.

Step 1 : Transformation at Sensor 1

Consider the coordinate transformation x[k] = T1z1[k]. Here, T1 is the non-

singular matrix that performs an observable canonical decomposition of the pair

(A,C1), yielding  z(1)[k + 1]

z
(1)
U [k + 1]


︸ ︷︷ ︸

z1[k+1]

=

A11 0

A1X A1U


︸ ︷︷ ︸

Ā1=T−1
1 AT1

 z(1)[k]

z
(1)
U [k]


︸ ︷︷ ︸

z1[k]

,

y1[k] =
[
C11 0

]
︸ ︷︷ ︸
C̄1=C1T1

z1[k].

(2.65)

Let z(1)[k] ∈ Ro1 . From (2.65), we obtain

z(1)[k + 1] = A11z
(1)[k],

y1[k] = C11z
(1)[k].

(2.66)

Step 2 : Transformation at Sensor 2

We know the following:

y2[k] = C2x[k] = C2T1z1[k]

,
[
C21 C21U

] z(1)[k]

z
(1)
U [k]

 . (2.67)

Let T̄2 be a non-singular transformation matrix that performs an observable canonical

decomposition of the pair (A1U ,C21U). We now wish to identify the portion of the

unobservable subspace of sensor 1 that is observable with respect to sensor 2. With

this objective in mind, consider the coordinate transformation z1[k] = T2z2[k], where

the non-singular transformation matrix T2 is defined as

T2 =

Io1 0

0 T̄2

 . (2.68)
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This yields the following dynamics:
z(1)[k + 1]

z(2)[k + 1]

z
(2)
U [k + 1]


︸ ︷︷ ︸

z2[k+1]

=


A11 0

T̄−1
2 A1X

A22 0

? A2U


︸ ︷︷ ︸

Ā2=T−1
2 Ā1T2


z(1)[k]

z(2)[k]

z
(2)
U [k]


︸ ︷︷ ︸

z2[k]

,

y2[k] =
[

C21 C22 0
]

︸ ︷︷ ︸
C̄2=C2T1T2

z2[k],

(2.69)

where

T̄−1
2 A1UT̄2 =

A22 0

? A2U

 ,
C21UT̄2 =

[
C22 0

]
.

(2.70)

Let z(2)[k] ∈ Ro2 . Let A21 be the matrix formed by the first o2 rows of T̄−1
2 A1X .

From (2.69), we have

z(2)[k + 1] = A22z
(2)[k] + A21z

(1)[k],

y2[k] = C22z
(2)[k] + C21z

(1)[k].
(2.71)

Following the same design procedure, we continue the sequence of transformations,

one for each sensor, until we reach the N -th sensor.

Step N : Transformation at Sensor N

Let T̄N be a transformation matrix that performs an observable canonical de-

composition of the pair (A(N−1)U ,CN(N−1)U). Next, consider the coordinate trans-

formation zN−1[k] = TNzN [k], where the transformation matrix TN is defined as

follows:

TN =



Io1 0

0

Io2 0

0

. . .
...

Io(N−1)
0

0 T̄N


. (2.72)
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Using this transformation matrix, it is easy to identify that the resulting dynamics

are governed by the following equations:

zN [k + 1] = ĀNzN [k],

yN [k] = C̄NzN [k],
(2.73)

where ĀN equals Ā in equation (2.5) and C̄N attains the form:

C̄N =
[

CN1 CN2 · · ·CN(N−1) CNN 0
]
. (2.74)

Thus, by defining T ,
∏n

i=1 Ti, we obtain the desired result.

2.11.2 Proof of Theorem 2.7.2

Proof Following the proof technique of Theorem 2.5.6, we induct on the sub-state

number and use the same notation as in the former proof. Accordingly, note that

the dynamics of the composite estimation error vector for the first sub-state, namely

Ē(1)[k], is governed by the following switched linear system model: Ē(1)[k + 1] =

M1[k]Ē(1)[k]. Note that the entries of Ē(1)[k] match a topological ordering consistent

with a spanning DAG rooted at node 1 in the baseline graph G. Here, M1[k] is a

time-varying matrix induced by the class of switching signals Ω and is of the structure

given by (2.22). Since Ω satisfies Assumption 2.7.1, each non-source node i ∈ V\{1} is

guaranteed to receive information from at least one of its parents in P(1)
i in at least one

switching mode over every time interval of the form [kT, (k+1)T ), where k ∈ N. Based

on our estimation scheme, for that corresponding switching mode, the block diagonal

entry corresponding to node i in the matrix M1[k] will be zero. With this observation

in mind, consider the following dynamics: Ē(1)[(k + 1)T ] = M̄1(k)Ē(1)[kT ], where

M̄1(k) = M1[(k+ 1)T −1] · · ·M1[kT + 1]M1[kT ]. From our prior discussion, it easily

follows that M̄1(k) is a lower block triangular matrix with zeroes on the block-diagonal

corresponding to the non-source nodes in V \ {1} and the entry (A11 − L1C11)T

corresponding to node 1. As the pair (A11,C11) is observable by construction, it

follows using standard arguments that M̄1(k) is always a Schur stable matrix. Since
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M̄1(k) belongs to a finite set of matrices (owing to a finite number of switching modes),

we can directly use [68, Proposition 2.9] to establish that limk→∞E(1)[kT ] = 0 and

hence limk→∞E(1)[k] = 0. Next, suppose that E(j)[k] converges to zero asymptotically

∀j ∈ {1, · · · , p − 1}, where 1 ≤ p − 1 ≤ N − 1. The composite estimation error

dynamics for sub-state p over an interval of length T is given by

Ē(p)[(k + 1)T ] = M̄p(k)Ē(p)[kT ] + F̄p(k)v̄(p), (2.75)

where M̄p(k) is defined in the same way as M̄1(k), and

v̄(p) =


v(p)[kT ]

...

v(p)[(k + 1)T − 1]

 ,v(p)[k] =

p−1∑
l=1

HplĒ
(pl)[k],

F̄p(k) =
[
(Mp[(k + 1)T − 1] · · ·Mp[kT + 1]) · · · Mp[(k + 1)T − 1] INop

]
.

It follows from our induction hypothesis that limk→∞ v(p)[k] = 0. Since M̄p(k) is

Schur stable for the class of switching signals satisfying Assumption 2.7.1 (in the

same way as M̄1(k) is Schur stable), it follows from ISS and [68, Proposition 2.9] that

limk→∞E(p)[k] = 0. Since the update rule (2.13) for the unobservable component

of the state is unaffected by changes in the network structure, the rest of the proof

proceeds similarly as the proof of Theorem 2.5.6.
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3. BYZANTINE-RESILIENT DISTRIBUTED

OBSERVERS FOR LTI SYSTEMS

In this chapter, we study the problem of collaboratively estimating the state of an LTI

system when certain nodes are compromised by adversaries. Specifically, we consider

a Byzantine adversary model, where a compromised node possesses complete knowl-

edge of the system dynamics and the network, and can deviate arbitrarily from the

rules of any prescribed algorithm. We first characterize certain fundamental limita-

tions of any distributed state estimation algorithm in terms of the measurement and

communication structure of the nodes. We then develop an attack-resilient, provably

correct state estimation algorithm that admits a fully distributed implementation. To

characterize feasible network topologies that guarantee applicability of our proposed

technique, we introduce a notion of ‘strong-robustness’ that captures both measure-

ment and communication redundancy. Finally, by drawing connections to bootstrap

percolation theory, we argue that given an LTI system and an associated sensor net-

work, the ‘strong-robustness’ property can be checked in polynomial time.

3.1 Introduction

The control of large-scale complex networked systems such as power grids, trans-

portation networks, and multi-agent robotic systems requires precise estimation of the

state of the underlying dynamical process. Typically, in these applications, sensors

(nodes) collecting information about the process are scattered over a geographical

region. As the diameters of such networks increase, routing information from all the

sensors to a central computational resource induces large delays and creates com-

munication bottlenecks. To bypass these difficulties, it thus becomes important to

consider distributed algorithms where individual sensors communicate only with sen-
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sors within a given distance. However, the potential merits [24] of such a distributed

approach are matched by various challenges. In particular, a key challenge is to design

networks and distributed algorithms that guarantee reliable operation of the system

in the face of faults or sophisticated adversarial attacks on certain sensors. The ex-

isting distributed state estimation approaches that we surveyed in Chapter 2 do not

account for such scenarios. This motivates the content of the present chapter.

3.1.1 Related Work

Over the last decade, a significant amount of research has focused on security

in networked control systems. In particular, for noiseless dynamical systems, it has

been established that zero-dynamics play a key role in characterizing the stealth of

an attack [69,70]. For networked control systems affected by noise, the authors in [71]

recently introduced an information-theoretic metric that quantifies the detectability

of an attack. A unifying feature of [69, 71], and the ones in [72–75], is that they

involve systems where all the sensor measurements are available at a single loca-

tion. In the sequel, we shall refer to such systems as centralized control systems.

Our problem formulation and subsequent analysis differs from the above literature

by constraining each sensor to exchange information with only its neighbors in the

communication graph. Some recent related work on resilient distributed parameter

estimation and resilient decentralized hypothesis testing are reported in [76] and [77],

respectively. The authors in [78] consider the problem of joint attack detection and

state estimation. However, the attack model, the system model, and the assumptions

on the communication graph in [78] differ considerably from the ones considered in

this chapter.

While the study of security in centralized control systems is now mature, there

lacks a comprehensive theoretical understanding of analogous questions in a dis-

tributed setting. Preliminary attempts to counter adversarial behavior in a dis-

tributed state estimation context are reported in [79], [80]. However, unlike our
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results, these papers neither provide any theoretical guarantees of success, nor allude

to graph-theoretic conditions that are necessary for their respective algorithms to

work. Recently, in [81], the authors employ an H∞ based approach for detecting bi-

asing attacks in distributed estimation networks. Our present work deviates from [81]

in several aspects, namely (i) while the analysis in [81] is limited to a certain class

of attack inputs, our attack model allows compromised nodes to behave arbitrarily,

i.e., no restrictions are placed on the inputs that can be injected by an adversary, (ii)

unlike [81], we develop a filtering algorithm that allows each uncompromised node to

asymptotically recover the state of the plant without explicitly detecting the nodes

under attack, and (iii) the existence of the attack detection filter proposed in [81]

relies on solving an LMI; however, the authors neither provide graph-theoretic in-

sights regarding the solvability of such an LMI nor discuss whether the LMI can be

solved in a distributed manner. In contrast, we detail graph-theoretic conditions that

allow each step of our approach to have a resilient, distributed implementation. Sum-

ming up, this chapter attempts to bridge the gap between centralized and distributed

resilient state estimation. Our main contributions in this context are discussed below.

3.1.2 Summary of Contributions

Our contributions are threefold. First, in Section 3.3, we characterize certain

necessary conditions that need to be satisfied by the sensor measurements and the

communication graph for the distributed state estimation problem to be solvable in

the presence of arbitrary adversarial behavior. Our results hold for any algorithm

and hence identify fundamental limitations that are of both theoretical and practical

importance in the design of attack-resilient robust networks. We also argue that our

impossibility results in the distributed setting generalize those existing for centralized

control systems subject to sensor attacks [82,83].

For the problem under consideration, it is imperative to understand which (poten-

tially adversarial) neighbors a given node should listen to, and subsequently, how it
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should process the information received from neighbors it chooses to listen to. Con-

sequently, our second contribution is to develop a distributed filtering algorithm in

Section 3.4 that enables each uncompromised node to recover the entire state dynam-

ics, provided certain graph conditions are met. A thorough analysis of the proposed

filtering scheme is then presented in Section 3.5.

As our third contribution, in Section 3.7, we introduce a topological property

called ‘strong-robustness’ to characterize feasible systems and networks that guaran-

tee applicability of our approach. By drawing connections to bootstrap percolation

theory, we show that the ‘strong-robustness’ property can be checked in polynomial

time (in the size of the system and the network).

The results in this chapter were published as [84] and [85].

Throughout this chapter, the term ‘resilient’ will be used in the same context

as that used traditionally in the computer science literature to deal with worst-case

adversarial attack models [86].

3.2 System and Attack Model

System Model: We consider the LTI system model (2.1) and the observation

model (2.2) studied earlier in Chapter 2. Recall that each node is tasked with esti-

mating the entire system state x[k] based on information received from its neighbors

and its local measurements (if any). As such, we assume that the pair (A,C) is

detectable (this is a necessary condition for solving the distributed state estimation

problem even in the absence of adversaries); however, we do not assume that the

pair (A,Ci) is detectable for any i ∈ V . Two immediate challenges (as identified in

Chapter 2) are as follows: (i) As the pair (A,Ci) may not be detectable for some

(or all) i ∈ {1, · · · , N}, information exchange is necessary; and (ii) information ex-

change is restricted by the underlying communication graph G. In addition to the

above challenges, in this chapter, we allow for the possibility that certain nodes in the
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network are compromised by an adversary, and do not follow their prescribed state

estimate update rule. We will use the following adversary model in this chapter.

Adversary Model: We consider a subset A ⊂ V of the nodes in the network

to be adversarial. We assume that the adversarial nodes are completely aware of

the network topology, the system dynamics, and the algorithm employed by the non-

adversarial nodes. Such an assumption of omniscient adversarial behavior is standard

in the literature on resilient distributed algorithms [87–95], and allows us to provide

guarantees against “worst-case” adversarial behavior. In terms of capabilities, an

adversarial node can leverage the aforementioned information to arbitrarily deviate

from the rules of any prescribed algorithm, while colluding with other adversaries in

the process. Furthermore, following the Byzantine fault model [86], adversaries are

allowed to send differing state estimates to different neighbors at the same instant of

time. To characterize the threat model in terms of the number of adversaries in the

network, we will use the following definitions from [91], [92].

Definition 3.2.1 (f-total set) A set C ⊂ V is f -total if it contains at most f nodes

in the network, i.e., |C| ≤ f .

Definition 3.2.2 (f-local set) A set C ⊂ V is f -local if it contains at most f nodes

in the neighborhood of the other nodes, i.e., |Ni ∩ C| ≤ f, ∀i ∈ V \ C.

Definition 3.2.3 (f-local and f-total adversarial models) A set A of adver-

sarial nodes is f -locally bounded (resp., f -totally bounded) if A is an f -local (resp.,

f -total) set.

In the literature dealing with distributed fault-tolerant algorithms, it is a common

assumption to consider an f -total adversarial model. However, to allow for a large

number of adversaries in large scale networks, we will allow the adversarial set to be

f -local. Summarily, the adversary model considered throughout this chapter will be

referred to as an f -locally bounded Byzantine adversary model. The non-adversarial

nodes will be referred to as regular nodes and be represented by the set R = V \ A.
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Note that the actual number and identities of the adversarial nodes are not known to

the regular nodes. As is standard, any reliable system is designed to provide a desired

level of resilience against a maximum number of component failures or attacks. We

share the same philosophy. Specifically, we assume that each node in the network

is programmed to tolerate upto a maximum of f adversaries in the entire network

(in an f -total model) or in its own neighborhood (in an f -local model). Such an

assumption is typical in the design of distributed protocols (for varied applications,

such as consensus [87,88,96], optimization [89,90], reference-tracking [93], formation-

control [94], multi-agent rendezvous [95], and broadcasting [91,92]) that are resilient

to worst-case Byzantine models like the one considered in this chapter.1

Throughout this chapter, we shall only consider causal (i.e., nodes act only on

past and present information), synchronous (i.e., all nodes share a common clock

w.r.t. their iterates), and deterministic algorithms (i.e., given the same input, such

algorithms generate the same output); note however that the notions of causal and

deterministic behavior apply only to the regular nodes. We shall also assume that all

quantities being updated iteratively by the regular nodes are initialized identically in

each execution. With x̂i[k] representing the estimate of x[k] maintained by node i,

the problem studied in this chapter can be formally stated as follows.

Problem 3 (Resilient Distributed State Estimation) Given an LTI system

(2.1), a linear measurement model (2.2), and a time-invariant directed communication

graph G, design a set of state estimate update and information exchange rules such

that limk→∞ ‖x̂i[k] − x[k]‖ = 0, ∀i ∈ R, regardless of the actions of any f -locally

bounded set of Byzantine adversaries.

The interplay between the measurement structure of the nodes and the underlying

communication graph results in certain conditions being necessary for solving Problem

3, irrespective of the choice of algorithm. We provide such conditions in the following

section.

1Some recent papers that look at weaker adversarial models than those considered by us are [97–99].
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3.3 Fundamental Limitations of any Distributed State Estimation Algo-

rithm

Intuitively, the network must possess a certain degree of measurement redundancy

as well as redundancy in its communication structure so as to counteract the effects of

adversarial behavior. More specifically, the measurements of the regular nodes must

ensure collective detectability of the state, and the network structure should prevent

the malicious nodes from acting as bottlenecks between correctly functioning nodes.

To identify necessary conditions for resilient distributed state estimation that capture

the above notions of redundancy, we first introduce some terminology.

Definition 3.3.1 (Critical Set) A set of nodes F ⊂ V is said to be a critical set if

the pair (A,CV\F) is not detectable.

Note that detectability of (A,C) implies that a critical set must necessarily be

non-empty.

Definition 3.3.2 (Minimal Critical Set) A set F ⊂ V is said to be a minimal

critical set if F is a critical set and no subset of F is a critical set.

Let M = {F1, · · · ,F|M|} denote the set of all minimal critical sets. With each

set Fi ∈M, we associate a virtual node si as follows. Directed edges are added from

si to each node in Fi and the resulting network is denoted by G ′i = (V ∪ si, E ∪ Ei),

where Ei represents the set of edges from si to Fi.

Definition 3.3.3 (f -local pair and f-total pair cuts w.r.t. si) Consider a

minimal critical set Fi ∈ M. A set H ⊂ V is called a cut w.r.t. si if removal of H

from G ′i results in an induced subgraph of G ′i whose node set can be partitioned into

two non-empty sets X and Y with si ∈ X , and no directed paths from X to Y in the

induced subgraph. A cut H w.r.t. si is called an f -local pair cut (resp., f -total pair

cut) w.r.t. si if it can be partitioned as H = H1 ∪ H2 such that both H1 and H2 are

f -local (resp., f -total) in G.
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Fig. 3.1. A 2-dimensional LTI system with two distinct, real, unstable
eigenvalues (modes) λ1, λ2 is monitored by a network G of 10 nodes as
shown above. Nodes 1-3 can detect λ1, while nodes 8-10 can detect λ2.
Thus, the two minimal critical sets associated with the above system and
network are F1 = {1, 2, 3} and F2 = {8, 9, 10}. An example of a set
that is critical, but not minimal, is {1, 2, 3, 8}. The virtual source nodes
associated with F1 and F2 are s1 and s2, respectively. There are no 1-
total pair cuts w.r.t. s1 or s2. The set H = {4, 5, 6, 7} is a 1-local pair
cut w.r.t. both s1 and s2 since H can be partitioned into H1 = {4, 5} and
H2 = {6, 7}, each of which are 1-local sets. Since H1 and H2 are each
2-total sets, H is also a 2-total pair cut w.r.t. both s1 and s2.

For an illustration of the above definitions, see Figure 3.1. The following result

identifies a fundamental limitation for f -local adversarial models.

Theorem 3.3.1 Suppose there exists an f -local pair cut w.r.t. si in G ′i for some

minimal critical set Fi ∈M. Then, it is impossible for any causal, synchronous and

deterministic algorithm to solve Problem 3.

Proof Suppose there exists an f -local pair cut H = H1 ∪ H2 w.r.t. si for some

minimal critical set Fi ∈ M. For the sake of contradiction, suppose there exists

a causal, synchronous and deterministic algorithm T that solves Problem 3 for the

given network G. From the definition of H, we see that Y contains no elements of

Fi. Since Fi is a critical set, it then follows that the pair (A,CY) is not detectable.
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Thus, there exists an initial condition x[0] = η that causes the measurement set yY [k]

corresponding to Y to be identically zero for all time, while the state x[k] remains

bounded away from zero. The idea of the proof will be to demonstrate that the nodes

in Y cannot distinguish between the zero initial condition and the initial condition η

under an appropriately constructed attack. To this end, noting that each of the sets

H1 and H2 are f -local and can hence act as valid adversarial sets, we consider the

following executions σ and σ′ of T .

Execution σ: The initial condition is x[0] = 0. The nodes in H1 are regular while

the nodes in H2 are adversarial. The nodes in H2 pretend that their state estimates

are x̂H2 [k] and that their measurements are CH2A
kη, where x̂H2 [k] represents the

collection of the state estimates maintained by the nodes in H2 during the execution

σ′ of T . Additionally, at each time-step, the nodes in H2 perform the exact same

actions that they perform during the execution σ′.

Execution σ′: The initial condition is x[0] = η. The nodes inH2 are regular while

the nodes inH1 are adversarial. The nodes inH1 pretend that their state estimates are

x̂H1 [k] and that their measurements are zero, where x̂H1 [k] represents the collection

of the state estimates maintained by the nodes in H1 during the execution σ of T .

Additionally, at each time-step, the nodes in H1 perform the exact same actions that

they perform during the execution σ.

Since the actions of the adversaries in the two executions described above are

coupled, it becomes important to establish that such actions are in fact well-defined.

To do so, we argue as follows. Consider the actions of the adversarial set H2 at

time k = 0 of execution σ. Due to their omniscient nature, these adversaries can

anticipate the information that a regular set H2 is supposed to transmit at time

k = 0 of execution σ′ based on algorithm T . Thus, their actions are well-defined at

time k = 0. Note that the last two statements rely on the deterministic nature of T .

Specifically, under a deterministic algorithm T , the actions of the regular nodes are

also deterministic, and hence, can be predicted in advance by an omniscient adversary

who is aware of the information set available to such regular nodes. An identical
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argument defines the actions of the adversarial set H1 at time k = 0 of execution

σ′. Since the actions of both the sets H1 and H2 at time k = 0 are well-defined in

each of the executions σ and σ′, the response of the regular nodes to such actions (in

the respective executions) at time k = 1 can be anticipated by any adversarial set.

Specifically, to generate their actions at time k = 1 of execution σ (resp., execution

σ′), the adversarial set H2 (resp., H1) simply simulates execution σ′ (resp., execution

σ) for time k = 0 to figure out how a regular set H2 (resp., H1) would act at time

k = 1 of execution σ′ (resp., execution σ). Repeating the above argument reveals

that the actions of the respective adversarial sets in each of the executions σ and σ′

are well-defined at every time step.

Based on the attack described above, it is clear that the nodes in Y receive the

same state estimate and measurement information from the nodes in H in each of

the two executions. Further, their own measurements are identically zero for all

time in each of the two executions. Hence, based on such identical information, it

is impossible for the nodes in Y to resolve the difference in the underlying initial

conditions via algorithm T . This leads to the desired contradiction and completes

the proof.

Remark 3.3.2 Interestingly, the necessary condition presented in the above theorem

bears close resemblance to the necessary condition in [92,100] for resilient broadcasting

subject to the same f -local Byzantine adversary model that we consider here. This

similarity can be attributed to the following analogy: viewing the virtual nodes as

originators of messages in a broadcasting context, Problem 3 can be interpreted as a

version of the resilient broadcasting problem where the regular nodes are required to

agree (asymptotically) on a time-varying message that captures the state evolution of

the system.

Our next result provides a necessary condition for an f -total (and hence, also an

f -local) adversarial model.
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Theorem 3.3.3 Suppose there exists a causal, synchronous and deterministic algo-

rithm that solves the variant of Problem 3 corresponding to an f -total Byzantine

adversary model. Then, the following equivalent statements are true.

(i) Consider any minimal critical set Fi ∈ M. There exists no f -total pair cut

w.r.t. si.

(ii) Consider a node i ∈ V such that (A,Ci) is not detectable. Let Xi denote the set

of all nodes in G that have directed paths to node i, and consider a set Di ⊆ Xi
such that |Di| ≤ 2f . Let Pi ⊆ Xi represent the set of nodes that have directed

paths to node i in the induced subgraph obtained by removing Di from G. Then,

(A,Ci∪Pi) is detectable.

The proof of necessity mimics the proof of Theorem 3.3.1, while the equivalence

between the two conditions stated in Theorem 3.3.3 is established in Section 3.10.1.

Remark 3.3.4 In [82, 83], the authors showed that for centralized systems subject

to f sensor attacks, a necessary condition for estimating the state asymptotically is

that the system should remain detectable after the removal of any 2f sensors. In

our present distributed setting, the maximum information about the state that any

given node i can hope to obtain is from the set {i ∪ Xi}, where Xi is defined as in

Theorem 3.3.3. Thus, the second part of Theorem 3.3.3 generalizes the necessary

conditions in [82,83]. In [70,101], the authors established that the graph-connectivity

metric plays a pivotal role in the analysis of fault-tolerant and resilient distributed

consensus algorithms for settings where there are no underlying state dynamics that

need to be estimated. The results stated in Theorems 3.3.1 and 3.3.3 differ from those

in [70, 101] since they blend both graph-theoretic and system-theoretic requirements.

Finally, it can be easily shown that when there are no adversaries, i.e., when f = 0, the

conditions identified in Theorem 3.3.3 reduce to the necessary and sufficient condition

for distributed state estimation, namely every source component (strong components

with no incoming edges) of the graph should be detectable [1, 30, 57, 58, 102].
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We now discuss certain implications of Theorem 3.3.3. Given an LTI system (2.1),

a measurement model specified by (2.2), and a communication graph G, it is of both

theoretical and practical interest to know the maximum number of adversaries that

can be tolerated when one seeks to solve Problem 3. Leveraging Theorem 3.3.3, we

can provide an upper bound on this number, as follows.

Corollary 3.3.5 Let k denote the smallest positive integer such that there exists a

k-total pair cut w.r.t. si for some Fi ∈ M. Then, the total number of adversaries f

must satisfy the inequality f < k for Problem 3 to have a solution.2

Corollary 3.3.6 The condition |Fi| ≥ (2f + 1) ∀Fi ∈ M is necessary for resilient

distributed state estimation subject to the f -local or f -total adversarial model.

The proof of the above result is straightforward and is hence omitted here. With the

above corollary in hand, one can gain insights regarding the distribution of certain

specific critical sets in the network. To do so, given an eigenvalue λj ∈ ΛU(A),

let {ρ(j)
1 , · · · ,ρ(j)

gA(λj)
} represent a basis for the null space of (A − λjIn), and let

φ
(j)
i = span{ρ(j)

i }, i ∈ {1, · · · , gA(λj)}. We say that node i can detect the subspace

φ
(j)
i if Ciρ

(j)
i 6= 0.3 LetW(j)

i ⊆ V denote the set of all nodes that can detect φ
(j)
i . The

next result then readily follows from Corollary 3.3.6 and the classical PBH test [104].

Proposition 3.3.1 For each λj ∈ ΛU(A), if W(j)
i ⊂ V, where 1 ≤ i ≤ gA(λj), then

|W(j)
i | ≥ (2f + 1) is a necessary condition for resilient distributed state estimation

subject to the f-local or f-total adversarial model.

For systems with distinct eigenvalues, a direct consequence of the above result is the

requirement of at least (2f + 1) nodes that can detect each unstable eigenvalue of

the system. The preceding analysis builds up to the distributed estimation strategy

2Similar bounds for static power system models subject to attacks were obtained in [103].
3Throughout the chapter, for the sake of conciseness, we use the terminology “node i can detect

eigenvalue λj” to imply that rank
[
A−λjIn

Ci

]
= n. Each stable eigenvalue is considered detectable

w.r.t. the measurements of every node.
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adopted in this chapter. In particular, our approach involves identifying the locally

detectable and undetectable eigenvalues associated with a given node, and subse-

quently devising separate estimation strategies for the subspaces associated with such

eigenvalues. We formalize this idea in the next section.

Remark 3.3.7 Two important directions of future investigation are (i) finding an

efficient algorithm (if one exists) for computing k in Corollary 3.3.5 either exactly or

approximately, and (ii) determining whether the conditions stated in Theorem 3.3.1

(resp., Theorem 3.3.3) are sufficient for achieving resilient distributed state estimation

subject to an f -local (resp., f -total) Byzantine adversary model. Note that the main

source of computational complexity associated with the first point lies in finding all

the minimal critical sets associated with the given system.

3.4 Resilient Distributed State Estimation

3.4.1 Preliminaries

For each eigenvalue λ ∈ sp(A), let V(λ) represent a block diagonal matrix with the

Jordan blocks corresponding to λ (in the standard Jordan canonical representation

of A) along the main block diagonal. We begin by recalling certain properties of the

real Jordan canonical form of a square matrix that will be useful for our subsequent

development [105]. We first note that if λ represents a non-real eigenvalue of A and

λ̄ represents its complex-conjugate, then [105, Lemma 3.1.18] ensures that λ and λ̄

have the same Jordan structure. Next, let λ = a + ib where a, b ∈ R, and i =
√
−1.

Let D(a, b) be defined as D(a, b) ,

 a b

−b a

. Then, the matrix diag(V(λ),V(λ̄)) is

similar to a real block upper triangular matrix W(λ) ∈ R2aA(λ)×2aA(λ) which has aA(λ)

2-by-2 blocks D(a, b) on the main block diagonal and (aA(λ)−1) blocks I2 on the block

super-diagonal. Henceforth, for a non-real eigenvalue λ ∈ sp(A), W(λ) will have the

meaning discussed above. Let sp(A) = {{λ1, λ̄1}, · · · , {λp, λ̄p}, λp+1, · · · , λγ} with

the first p pairs representing the non-real eigenvalues, and λp+1 to λγ representing the
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real eigenvalues of A. Then, the real Jordan canonical form theorem [105, Theorem

3.4.1.5] can be stated as follows.

Theorem 3.4.1 There exists a real similarity transformation matrix T that trans-

forms the state transition matrix A in (2.1) to a real block diagonal matrix M given

by M = diag(W(λ1), · · · ,W(λp),V(λp+1), · · · ,V(λγ)).

With T as in the above theorem, and z[k] = T−1x[k], the dynamics (2.1) are

transformed into the form

z[k + 1] = Mz[k]

yi[k] = C̄iz[k], ∀i ∈ {1, · · · , N}
(3.1)

where M = T−1AT and C̄i = CiT. For a non-real eigenvalue pair {λj, λ̄j} ∈ sp(A),

let z(j)[k] ∈ R2aA(λj) represent the portion of the state z[k] associated with the matrix

W(λj). Similarly, for a real eigenvalue λj ∈ sp(A), z(j)[k] ∈ RaA(λj) is the portion

of the state z[k] associated with the matrix V(λj). For each node i, we denote the

detectable and undetectable eigenvalues by the sets Oi and Oi, respectively. Next,

we introduce the notion of source nodes.

Definition 3.4.1 (Source nodes) For each λj ∈ ΛU(A), the set of nodes that can

detect λj is denoted by Sj, and called the set of source nodes for λj.

We now proceed to develop an estimation scheme that enables each regular node

to estimate z[k] (from which they can obtain x[k] = Tz[k]). Accordingly, let ẑ
(j)
i [k]

denote the estimate of z(j)[k] (the portion of z[k] corresponding to the eigenvalue λj
4)

maintained by node i ∈ R. For each λj ∈ ΛU(A), our estimation scheme relies on

separate strategies for nodes in Sj and V \Sj. In particular, each node in Sj employs

a Luenberger observer for estimating z(j)[k]. The nodes in V \ Sj, on the other hand,

cannot detect the eigenvalue λj, and thus rely on a resilient consensus algorithm to

estimate z(j)[k]. In what follows, we discuss these ideas in detail.

4Throughout the rest of the chapter, the terminology “z(j)[k] corresponds to the eigenvalue λj”
should be interpreted as z(j)[k] corresponds to the eigenvalue pair {λj , λ̄j} for a non-real eigenvalue
λj ∈ sp(A).
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The first step in the estimation process involves the above common coordinate

transformation given by z[k] = T−1x[k], to be performed by each regular node of the

graph. As this only requires knowledge of the system matrix A (which is assumed to

be known by all the nodes), all of the nodes can do this in a distributed manner (e.g.,

by using an agreed-upon convention for ordering the eigenvalues and corresponding

eigenvectors). Building on the general theme in [57], we first present a method that

allows a regular node i ∈ R to estimate the locally detectable portion of the state z[k]

without communicating with neighbors. To this end, consider the following result.

Lemma 3.4.2 Let λj ∈ Oi be a non-real eigenvalue. Let C̄
(j)
i denote the columns of

C̄i corresponding to W(λj) in (3.1). Then, the pair (W(λj), C̄
(j)
i ) is detectable.

Proof We claim that λj ∈ Oi if and only if λ̄j ∈ Oi. It suffices to prove necessity

since the proof for sufficiency will follow an identical argument. We prove necessity

by contradiction. Suppose node i can detect λj (i.e., λj ∈ Oi), but cannot detect

λ̄j. Then, there exists v 6= 0 such that Av = λ̄jv and Civ = 0. Taking complex

conjugates on both sides of these equations reveals that node i cannot detect λj,

leading to the desired contradiction. Given that a similarity transformation maps

(A,Ci) to (M, C̄i), it then follows that {λj, λ̄j} are detectable eigenvalues w.r.t.

(M, C̄i). Detectability of the pair (W(λj), C̄
(j)
i ) then follows readily from the PBH

test by noting the structure of the matrix M.

Let Oi = {{λn1 , λ̄n1}, · · · , {λnpi , λ̄npi}, λnpi+1 , · · · , λnγi}, where the first pi pairs

represent the non-real eigenvalues, and λnpi+1 to λnγi represent the real eigenval-

ues of A that are detectable w.r.t. the measurements of node i. Let MOi =

diag(W(λn1), · · · ,W(λnpi ),V(λnpi+1), · · · ,V(λnγi )). Let COi represent the columns

of C̄i corresponding to the matrix MOi , and zOi [k] denote the portion of the state

z[k] corresponding to the detectable eigenvalues of node i, i.e., corresponding to Oi.

Based on Lemma 3.4.2, it is easy to see that the pair (MOi ,COi) is detectable. Thus,

a standard Luenberger observer can be locally constructed by node i for estimating

zOi [k]. The details of such a construction are straightforward, and are similar to
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those in Section VI-A of [58]. We thus skip minor details and state the following

result which will be useful later on.

Lemma 3.4.3 For each regular node i ∈ R and each λj ∈ Oi, a Luenberger observer

can be locally constructed by node i such that limk→∞ ‖ẑ(j)
i [k]− z(j)[k]‖ = 0.

Based on the previous result, we see that a regular node i can estimate certain

portions of the state space without having to exchange information with neighbors.

The challenge, however, lies in estimating the locally undetectable portion of the state

in the presence of adversaries. The following section presents a resilient consensus

based strategy to address this issue.

3.4.2 Local-Filtering Based Resilient Estimation

For any λj ∈ sp(A), let z(jm)[k] denote the m-th component of the vector z(j)[k],

and let ẑ
(jm)
i [k] denote the estimate of that component maintained by node i ∈ V .

Consider an unstable eigenvalue λj ∈ Oi. For such an eigenvalue, node i has to rely

on the information received from its neighbors, some of which might be adversarial,

in order to estimate z(j)[k]. To this end, we propose a resilient consensus algorithm

that requires each regular node i ∈ V \ Sj to update its estimate of z(j)[k] using the

following two stage filtering strategy:

1) At each time-step k, each regular node i collects the state estimates of z(j)[k]

received from only those neighbors that belong to a certain subset N (j)
i ⊆ Ni

(to be defined later). For every component m of z(j)[k], the estimates of z(jm)[k]

received from nodes in N (j)
i are sorted from largest to smallest.

2) For each component m of z(j)[k], node i removes the largest and smallest f

estimates (i.e., removes 2f estimates in all) of z(jm)[k] received from nodes in

N (j)
i , and computes the quantity:

z̄
(jm)
i [k] =

∑
l∈M(jm)

i [k]

w
(jm)
il [k]ẑ

(jm)
l [k], (3.2)
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where M(jm)
i [k] ⊂ N (j)

i (⊆ Ni) is the set of nodes from which node i chooses

to accept estimates of z(jm)[k] at time-step k, after removing the f largest and

f smallest estimates of z(jm)[k] from N (j)
i . Node i assigns the weight w

(jm)
il [k]

to the l-th node at the k-th time-step for estimating the m-th component of

z(j)[k]. The weights are nonnegative and chosen to satisfy
∑

l∈M(jm)
i [k]

w
(jm)
il [k] =

1,∀λj ∈ Oi and for each component m of z(j)[k]. With the quantities z̄
(jm)
i [k]

in hand, node i updates ẑ
(j)
i [k] as follows:

ẑ
(j)
i [k + 1] =

V(λj)z̄
(j)
i [k], if λj ∈ Oi is real

W(λj)z̄
(j)
i [k], if λj ∈ Oi is not real,

(3.3)

where z̄
(j)
i [k] =

[
z̄

(j1)
i [k], · · · , z̄(jσj)

i [k]
]T

, σj = aA(λj) if λj ∈ Oi is real, and

σj = 2aA(λj) if λj ∈ Oi is not real.

We refer to the above algorithm as the Local-Filtering based Resilient Estimation

(LFRE) algorithm. For implementing this algorithm, a regular node i needs to con-

struct the set N (j)
i , ∀λj ∈ Oi, based on the relative positions of its neighbors (with

respect to its own position) in G. We will provide the exact definition of N (j)
i , and

a distributed algorithm for constructing such a set in the following sections where

we analyze the convergence of the LFRE algorithm. We conclude this section by

commenting on certain features of the LFRE algorithm.

Remark 3.4.4 The rationale behind performing a real Jordan canonical decomposi-

tion at every node (as opposed to a standard Jordan transformation) is to ensure that

the state estimates featuring in equations (3.2) and (3.3) are real at every time-step,

thereby making the sorting operation performed in Step 1 of the algorithm meaning-

ful. At any time-step, if a regular node i either receives a non-real estimate of z(jm)[k]

from some node l ∈ N (j)
i or does not receive an estimate at all, it would immediately

identify node l as an adversarial node, and simply assign a 0 value to node l’s estimate

of z(jm)[k]. Note that every regular node in N (j)
i will always transmit a real estimate

to node i at every time-step.



88

Remark 3.4.5 The strategy of disregarding the most extreme values in one’s neigh-

borhood, and using a convex combination of the rest for performing linear scalar

updates, has been used for designing resilient distributed algorithms for consensus

[87, 88, 106] and optimization [89, 90] problems. In this chapter, we show that such

algorithms can also be used for resilient distributed state estimation, with certain sub-

stantial differences arising from the fact that the nodes are trying to track the state

of an external dynamical system.

Remark 3.4.6 The consensus weights w
(jm)
il appearing in equation (3.2) can be cho-

sen arbitrarily to achieve an exponential rate of convergence, as long as the weights

meet the rules specified by the LFRE algorithm. Since our primary focus is on

resilience against worst-case adversarial behavior, the problem of optimizing such

weights (or exploiting sensor memory) for achieving improved performance against

noise is not considered in this chapter. In a non-adversarial setting (i.e., when f = 0),

the proposed LFRE algorithm will continue to guarantee exponential convergence in

the absence of noise, and bounded mean square error in the presence of i.i.d. noise

with bounded second moments (provided the topological conditions outlined in Section

3.7 are met). However, disregarding the estimates of certain neighbors in the absence

of attacks may potentially degrade performance against noise; we do not delve deeper

into this topic here.

It should be noted that the algorithmic development in this section can be consid-

erably simplified if more structure is imposed on the system matrix A (for instance,

the assumption made in [84] that A has only real, distinct eigenvalues).

3.5 Analysis of the Resilient Distributed Estimation Strategy

In this section, we provide our main result concerning the convergence of the

LFRE algorithm. Let ΩU(A) , {λj ∈ ΛU(A)|V \ Sj is non-empty}. By this def-

inition, all nodes are source nodes for each eigenvalue in ΛU(A) \ ΩU(A), and are

hence capable of recovering the corresponding portions of the state based on locally
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Fig. 3.2. A scalar unstable plant is monitored by a network of 7 nodes
as depicted by the figure on the left. Nodes 1, 2 and 3 are the source
nodes for this system. The figure on the right represents a subgraph of
the original graph satisfying the properties of a MEDAG in Definition
3.5.1 for all 1-local sets (i.e., with f = 1). For example, when A = {1} (as
shown in the right figure), every non-source node has at least 2f + 1 = 3
neighbors. The levels that partition R = V \ A are level 0 with nodes 2
and 3, level 1 with nodes 4, 5 and 6, and level 2 with node 7. Each regular
node has all its regular neighbors in levels that are numbered lower than
its own.

constructed Luenberger observers (as discussed in Section 3.4.1). Consequently, the

LFRE algorithm specifically applies to only those eigenvalues that belong to ΩU(A).

Consider the following definition.

Definition 3.5.1 (Mode Estimation Directed Acyclic Graph (MEDAG))

Consider an eigenvalue λj ∈ ΩU(A). Suppose there exists a spanning subgraph Gj =

(V , Ej) of G with the following properties for all f -local sets A and R = V \ A.

(i) If i ∈ {V \Sj}∩R, then |N (j)
i | ≥ 2f + 1, where N (j)

i = {l|(l, i) ∈ Ej} represents

the neighborhood of node i in Gj.

(ii) There exists a partition of R into the sets {L(j)
0 , · · · ,L(j)

Tj
}, where Tj ∈ N+,

L(j)
0 = Sj ∩ R, and if i ∈ L(j)

q (where 1 ≤ q ≤ Tj), then N (j)
i ∩ R ⊆

⋃q−1
r=0 L

(j)
r .

Furthermore, N (j)
i = ∅,∀i ∈ L(j)

0 .
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Then, we call Gj a Mode Estimation Directed Acyclic Graph (MEDAG) for λj ∈

ΩU(A).

An example of a MEDAG is shown in Figure 3.2. The “for all A” in the definition

accounts for the fact that the set of adversarial nodes during the process of state

estimation is unknown, and hence can be any f -local set of V . Note that Tj and the

levels L(j)
0 to L(j)

Tj
can vary across different f -local sets. For a given f -local set A, we

say a regular node i ∈ L(j)
m “belongs to level m”, where the levels are indicative of

the distances of the regular nodes from the source set Sj. The first property indicates

that every regular node i ∈ V \Sj has at least (2f + 1) neighbors in the subgraph Gj,

while the second property indicates that all its regular neighbors in such a subgraph

belong to levels strictly preceding its own level. In essence, the edges of the MEDAG

Gj represent a medium for transmitting information securely from the source nodes

Sj to the non-source nodes, by preventing the adversaries from forming a bottleneck

between such nodes. Intuitively, this requires redundant nodes and edges, and such

a requirement is met by the first property of the MEDAG. In particular, as regards

measurement redundancy, it follows from the definition that for each λj ∈ ΩU(A),

a MEDAG Gj contains at least (2f + 1) source nodes that can detect λj.
5 The

LFRE algorithm described in the previous section relies on a special uni-directional

information flow pattern that requires a node i to listen to only its neighbors in N (j)
i

for estimating z(j)[k]. The second property of a MEDAG then indicates that nodes

in level m only use the estimates of regular nodes in levels 0 to m− 1 for recovering

z(j)[k]. The implications of the above properties will become apparent in the proof of

the following result which provides a sufficient condition for solving Problem 3 based

on our approach.

Theorem 3.5.1 Suppose that G contains a MEDAG Gj for each λj ∈ ΩU(A). Then,

based on the LFRE dynamics described by equations (3.2) and (3.3), each regular

5Recall from the discussion immediately following Proposition 3.3.1 that such a condition is in fact
necessary for systems with distinct eigenvalues.
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node i ∈ R can asymptotically estimate the state of the plant, despite the actions of

any f -locally bounded set of Byzantine adversaries.

The proof of the above theorem is given in Section 3.10.2. Notice that Theorem

3.5.1 hinges on the existence of a MEDAG Gj, for each λj ∈ ΩU(A); in the following

section we describe an approach for checking whether a given graph G contains such

MEDAGs.

3.6 Checking the Existence of a MEDAG

From the foregoing discussion, it is apparent that the MEDAGs described in

Definition 3.5.1 play a key role in solving Problem 3 based on our proposed technique.

In particular, recall that for each λj ∈ ΩU(A), the LFRE algorithm described in

Section 3.4.2 requires a regular node i ∈ V \ Sj to accept estimates from only its

neighbor set N (j)
i in the MEDAG Gj for estimating z(j)[k]. With these points in

mind, our immediate goal in this section will be to develop a distributed algorithm,

namely Algorithm 1, that constructs a MEDAG Gj for each λj ∈ ΩU(A), and in

the process enables each regular node i to determine the set N (j)
i for each λj ∈ Oi.

The construction of these MEDAGs constitutes the initialization phase of our design,

which can then be followed up by the LFRE algorithm described earlier. We briefly

describe the implementation of Algorithm 1 as follows.

Algorithm 1 requires each node i to maintain a counter ci(j) and a list of indices

N (j)
i for each λj ∈ ΩU(A). The nodes in N (j)

i ⊆ Ni will be the parents of node i

in the DAG constructed for the estimation of z(j)[k]. Algorithm 1 is initialized with

ci(j) = 0 and N (j)
i = ∅, for each i ∈ V . Subsequently, the algorithm proceeds in

rounds where in the first round each node in Sj broadcasts the message “1” to its

out-neighbors, sets ci(j) = 1, maintains N (j)
i = ∅ for all future rounds, and goes to

sleep. Each node i ∈ V \ Sj waits until it has received “1” from at least (2f + 1)

distinct neighbors, at which point it sets ci(j) = 1, appends the labels of each of

the neighbors from which it received “1” to N (j)
i , broadcasts the message “1” to its
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Algorithm 1 MEDAG Construction Algorithm

1: For each eigenvalue λj ∈ ΩU(A) do:

2: Initialization: Initialize ci(j) = 0, N (j)
i = ∅, ∀i ∈ V . Each node determines

whether it belongs to Sj.

3: Actions of the source nodes: Each node in Sj updates its counter value

ci(j) = 1, and transmits the message “1” to its out-neighbors. Following this

step, it does not listen to any other node, i.e., N (j)
i = ∅ and ci(j) = 1, ∀i ∈ Sj for

the remainder of the algorithm.

4: Actions of the non-source nodes: Each node i ∈ V \ Sj does the following:

• If ci(j) = 0 and node i has received “1” from at least (2f + 1) distinct

neighbors (not necessarily all in the same round), it updates ci(j) to 1,

appends the labels of the neighbors from which it received “1” to N (j)
i , and

transmits “1” to its out-neighbors.

• If ci(j) = 1, it discards all messages received from its neighbors, i.e., it does

not update ci(j) or N (j)
i .

5: Return : A set of sets {N (j)
i }, λj ∈ ΩU(A), i ∈ V .

out-neighbors, and goes to sleep. Let R′ ⊆ V denote the set of nodes that behave

regularly during the execution of Algorithm 1. We say that the MEDAG construction

algorithm “terminates for λj” if there exists Tj ∈ N+ such that ci(j) = 1 ∀i ∈ R′, for

all rounds following round Tj. The objective of the algorithm is to return a set of

sets {N (j)
i }, where λj ∈ ΩU(A), and i ∈ V .

We emphasize that in addition to misbehavior during the state estimation phase

(run-time), an adversarial node is allowed to misbehave during the implementation

of Algorithm 1 (design-time) as well. For example, it can transmit the message out

of turn, i.e., before receiving “1” from at least (2f + 1) neighbors. It can also choose

not to transmit the message at all. Note however that we must have V \ R′ ⊆ A,

i.e., the f -local set of adversaries during the estimation phase must contain the set
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of adversaries during the design phase. In the next section, we shall detail graph

conditions that guarantee the termination of the MEDAG construction algorithm

under arbitrary adversarial behavior. For the following discussion, we characterize

the properties of the output of Algorithm 1 if it terminates. To this end, consider the

spanning subgraph Gj = (V , Ej) induced by the sets {N (j)
i } returned by Algorithm

1. Keeping in mind that R′ ⊇ R represents the set of nodes that behave regularly

during the execution of Algorithm 1, we have the following results; proofs of these

results can be found in [84].

Proposition 3.6.1 Suppose Algorithm 1 terminates for some λj ∈ ΩU(A), and re-

turns the sets {N (j)
i }. Then, the spanning subgraph Gj induced by these sets contains

no directed cycles where every node belongs to R′.

Let L(j)
m−1 denote the set of all nodes in R′ that update their counter value from

0 to 1 in round m of Algorithm 1, i.e., L(j)
0 = Sj ∩R′, and so on.6

Proposition 3.6.2 Suppose Algorithm 1 terminates for some λj ∈ ΩU(A). Let Tj

denote the smallest integer such that in round Tj, ci(j) = 1 ∀i ∈ R′. Then, the sets

{L(j)
0 , · · · ,L(j)

Tj
} form a partition of the set R′ in Gj.

Theorem 3.6.1 Suppose the MEDAG construction algorithm terminates for λj ∈

ΩU(A). Then, there exists a subgraph Gj satisfying the properties of a MEDAG for

all f -local sets A that contain V \ R′ as a subset.

Proof The result follows immediately from Propositions 3.6.1 and 3.6.2.

Remark 3.6.2 Based on the above theorem, we make the following observations. If

Algorithm 1 terminates for each λj ∈ ΩU(A), and V \ R′ = ∅, then the Gj subgraphs

satisfy all the properties of a MEDAG and we can directly invoke Theorem 3.5.1. If

Algorithm 1 terminates for each λj ∈ ΩU(A) and V \ R′ 6= ∅, (i.e., there is some

adversarial activity during the MEDAG construction phase), then we do not need to

6Note that the method developed in this chapter allows even some of the source nodes in Sj to be
adversarial.
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provide any guarantees of state estimation for the set of misbehaving nodes V \ R′,

since V \ R′ ⊆ A. In this case too, the subgraphs returned by Algorithm 1 have

enough redundancy to ensure that Problem 3 can be solved based on our proposed

approach; this fact can be established using arguments identical to those used for

proving Theorem 3.5.1. In what follows, we summarize our overall approach.

3.6.1 Summary of the Resilient Distributed State Estimation Scheme

1) Each regular node i ∈ R performs the coordinate transformation z[k] = T−1x[k]

described in Section 3.4.1; accordingly, it identifies its detectable and unde-

tectable eigenvalues (Oi and Oi respectively).

2) The MEDAG construction algorithm described by Algorithm 1 is implemented

for each λj ∈ ΩU(A); graph conditions for termination of this algorithm are

provided in the next section. At the end of this algorithm, each regular node i

knows the subset N (j)
i of neighbors it should use in the LFRE algorithm.

3) Each regular node i employs a locally constructed Luenberger observer (refer

to Lemma 3.4.3 and the discussion preceding it) for estimating zOi [k], namely

the portion of the state z[k] corresponding to its detectable eigenvalues.

4) Each regular node i employs the LFRE algorithm governed by equations (3.2)

and (3.3) for estimating zOi [k], namely the portion of the state z[k] correspond-

ing to its undetectable eigenvalues.

Remark 3.6.3 Whereas steps 1 and 2 correspond to the initial design phase of our

scheme, steps 3 and 4 constitute the estimation phase. A key benefit of the proposed

method is that if certain graph-theoretic conditions (to be discussed in the follow-

ing section) are met, then our overall scheme provably admits a fully distributed

implementation even under worst-case adversarial behavior.
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3.7 Feasible Graph Topologies

In this section, we characterize feasible graph topologies that guarantee the ter-

mination of the MEDAG construction algorithm described in the previous section. In

other words, based on Remark 3.6.2, feasible graph topologies guarantee that Prob-

lem 3 can be solved based on our proposed approach (summarized in Section 3.6.1).

We first recall the following definition from [88,106].

Definition 3.7.1 (r-reachable set) For a graph G = (V , E), a set S ⊂ V, and an

integer r ∈ N+, S is an r-reachable set if there exists an i ∈ S such that |Ni \ S| ≥ r,

Thus, if a set S is r-reachable, then it contains a node which has at least r

neighbors outside S. We modify the notion of a strongly-r robust graph from [106] as

follows.

Definition 3.7.2 (strongly r-robust graph w.r.t. Sj) For r ∈ N+ and λj ∈

ΩU(A), a graph G = (V , E) is strongly r-robust w.r.t. to the set of source nodes

Sj, if for any non-empty subset C ⊆ V \ Sj, C is r-reachable.

For an illustration of the above definitions, the reader is referred back to Figure

3.2. Figure 3.2(a) is an example of a network that is strongly 3-robust w.r.t. the

set of source nodes, namely nodes {1, 2, 3}. Specifically, all subsets of {4, 5, 6, 7} are

3-reachable (i.e., each such subset has a node that has at least 3 neighbors outside

that subset).

Lemma 3.7.1 The MEDAG construction algorithm terminates for λj ∈ ΩU(A) if G

is strongly (3f + 1)-robust w.r.t. Sj.

Proof We prove by contradiction. Consider any λj ∈ ΩU(A) and let G be strongly

(3f + 1)-robust w.r.t. the set of source nodes Sj. Suppose that the MEDAG con-

struction algorithm for λj does not terminate. Since the possibility of the counter

ci(j) oscillating between 0 and 1 (where i ∈ R) is ruled out based on our MEDAG
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construction algorithm, there must then exist a non-empty set C ⊆ V \ Sj of regular

nodes that never update their counter ci(j) from 0 to 1, where i ∈ C. As G is strongly

(3f + 1)-robust w.r.t. Sj, it follows that C is (3f + 1)-reachable, i.e., there exists

a node i ∈ C which has at least (3f + 1) neighbors outside C. Under the f -local

adversarial model, at least (2f + 1) of them are regular nodes with ci(j) = 1. Thus,

at least (2f + 1) regular nodes must have transmitted the message “1” to node i.

Thus, based on the rules of Algorithm 1, node i must have updated ci(j) from 0 to 1

at some point of time, leading to a contradiction.

Whereas the (2f + 1) term appears in various contexts when dealing with security

problems on networks (such as distributed consensus [87, 88], broadcasting [91, 92]

and optimization [89, 90]), the (3f + 1) term featuring in our analysis accounts for

misbehavior that involves transmission of no messages by the adversarial nodes dur-

ing execution of the MEDAG construction algorithm described in Section 3.6. We

now present the main result of this chapter which ties together the previous results

presented in this chapter, and in turn provides a connection between feasible graph

topologies and the solution to Problem 3 based on our proposed approach.

Theorem 3.7.2 Consider an LTI system (2.1) and a measurement model (2.2). Let

the communication graph G be strongly (3f+1)-robust w.r.t. Sj,∀λj ∈ ΩU(A). Then,

the proposed algorithm summarized in Section 3.6.1 provides a solution to Problem 3.

Proof From Lemma 3.7.1, it follows that if G is strongly (3f + 1)-robust w.r.t. Sj
for every λj ∈ ΩU(A), then the MEDAG construction algorithm terminates for each

such eigenvalue. Combining Theorem 3.6.1, Remark 3.6.2 and Theorem 3.5.1 then

leads to the desired result.

If the adversarial attacks are restricted to the estimation phase only, i.e., if there are

no attacks during the initial MEDAG construction phase, then the following result

provides a tight graph condition for our algorithm.
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Theorem 3.7.3 Consider an LTI system (2.1) and a measurement model (2.2). Sup-

pose adversarial behavior is restricted to the estimation phase (steps 3 and 4) of the

proposed algorithm summarized in Section 3.6.1. Then, this algorithm solves Problem

3 if and only if G is strongly (2f + 1)-robust w.r.t. Sj, ∀λj ∈ ΩU(A).

The proof of the above result is given in Section 3.10.3. Essentially, Theorem 3.7.3

alludes to the fact that G contains a MEDAG Gj for each λj ∈ ΩU(A) if and only if

G is strongly (2f + 1)-robust w.r.t. Sj, ∀λj ∈ ΩU(A). Note that although Theorem

3.7.3 provides a graph condition that is necessary and sufficient for the algorithm

developed in this chapter, such a condition may not be necessary for solving Problem

3 in general.

Theorems 3.7.2 and 3.7.3 reveal that ‘strong r-robustness w.r.t. Sj, ∀λj ∈ ΩU(A)’

is the key topological property required for guaranteeing success of our proposed

algorithm. Accordingly, given a system model (2.1) and measurement model (2.2), a

network that is strongly r-robust w.r.t. Sj, ∀λj ∈ ΩU(A), will be called an ‘r-feasible

network ’ for simplicity. We summarize certain features of an r-feasible network in

the following result.

Proposition 3.7.1 An r-feasible network G has the following properties.

(i) The graph G ′ = (V ∪ vnew, E ∪ Enew), where vnew is a new vertex added to G and

Enew is the edge set associated with vnew, is an r-feasible network if |Nvnew | ≥ r.

(ii) r ≤ minλj∈ΩU (A) |Sj|.

(iii) Let S =
⋂
λj∈ΩU (A) Sj. Then |Ni| ≥ r, ∀i ∈ V \ S.

(iv) Removal of a k-local set from G, where 0 < k < r, results in a network G ′ that

is (r − k)-feasible.

Proof (i) Consider any λj ∈ ΩU(A). If vnew is a source node for λj, then it is

easily seen that G ′ is strongly r-robust w.r.t. Sj. For the case when vnew is not a
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source node for λj, consider any non-empty set C ⊆ {V ∪ vnew} \ Sj. If C = {vnew},

then r-reachability of C follows from the fact that |Nvnew | ≥ r. In every other case, C

contains some nodes of the original graph G and is hence r-reachable as G is r-feasible.

Thus G ′ is strongly r-robust w.r.t. Sj. A similar analysis holds for each λj ∈ ΩU(A),

leading to the desired result.

(ii) Suppose r > |Sρ| where ρ = arg minλj∈ΩU (A) |Sj|. Since the set C = V \ Sρ can

be at most |Sρ|-reachable and |Sρ| < r, it follows that G is not r-feasible.

(iii) Suppose i ∈ V \ S with |Ni| < r. As i ∈ V \ S, there exists some λj ∈ ΩU(A)

such that i ∈ V\Sj. Consider the set C = {i}. As |Ni| < r, the set C is not r-reachable.

Thus, G is not strongly r-robust w.r.t. Sj, implying that G is not r-feasible.

(iv) First, observe that as G is r-feasible and k < r, removal of a k-local set from

G cannot cause the removal of an entire source node net Sj for any λj ∈ ΩU(A). This

follows from noting that any source set Sj where λj ∈ ΩU(A) (or any set containing

Sj) will have an overlap of at least r nodes with the neighborhood of some non-source

node owing to the r-feasibility of the original network. As r > k, such sets are not

k-local. Next, pick any λj ∈ ΩU(A) and let C be a non-empty subset of V ′ \ Sj
′
,

where V ′ and Sj
′

represent the vertex set and source node set for λj, respectively, in

G ′ . Since C was r-reachable in G, it contained some node v with r neighbors outside

C. While constructing G ′ , node v can lose at most k of such neighbors, and hence C

is (r − k)-reachable in G ′ . The rest of the proof follows trivially.

We remark on certain implications of the above result. The first property provides a

procedure for constructing r-feasible networks with N nodes (where N > r) starting

from r-feasible networks with fewer than N nodes. The second property shows that

the measurement structure of the nodes provides an upper bound on the robustness

of the overall network. The third property places a lower bound on the minimum

in-degree of any node that cannot estimate the entire state on its own in an r-feasible

network. Finally, a direct implication of the fourth property is that a loss of k source

nodes (where k < r) for any unstable eigenvalue of the system (possibly due to sensor
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failures) leaves the resulting network at least (r − k)-feasible if the original network

is r-feasible to begin with.

3.7.1 Applicability of the Proposed Approach

Building on the insights developed in this section, we make a case for the ap-

plicability of the approach developed in this chapter by addressing the following

question: How efficiently can one verify whether a given system and network is r-

feasible? To answer the above question, we will exploit a connection between the

‘strong r-robustness property w.r.t. a certain set of nodes’ and the dynamic process

of ‘bootstrap percolation’ on networks [107]. Given a graph G and a threshold r ≥ 2,

bootstrap percolation can be viewed as a process of spread of activation where one

starts off with a set I ⊆ V of initially active nodes. Subsequently, the process evolves

over the network based on the rule that an inactive node becomes active if and only

if it has at least r active neighbors, with active nodes remaining active forever. The

process terminates when no more nodes become active; an initial set I is said to per-

colate if upon termination the final active set equals the entire node set V . Consider

the following simple, yet key observation.

Lemma 3.7.4 Given a graph G and a threshold r ≥ 2, an initial set I percolates via

the process of bootstrap percolation if and only if G is strongly r-robust w.r.t. I.

The proof of the above result follows similar arguments as Lemma 3.7.1, and is hence

omitted. Leveraging Lemma 3.7.4, we obtain the following result.

Proposition 3.7.2 Given a system matrix A ∈ Rn×n (2.1), a measurement model

(2.2), a communication graph G = (V , E) with |V| = N , the source set Sj for each

λj ∈ sp(A), and an integer r ≥ 2, one can verify whether the network is r-feasible in

O(nN |E|) time.

Proof Notice that |ΩU(A)| ≤ n, i.e., there are at most n source sets Sj for which

we need to verify the strong r-robustness property in Definition 3.7.2. Based on
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Lemma 3.7.4, for each Sj corresponding to some λj ∈ ΩU(A), verifying whether G

is strongly r-robust w.r.t. Sj is equivalent to verifying whether Sj percolates via the

process of bootstrap percolation with threshold r. Thus, we analyze the complexity

of simulating a bootstrap percolation process on a given network.7 First, notice that

it takes at most N iterations/rounds for a bootstrap percolation process to terminate

on a network of N nodes. In each round, every inactive node checks whether it has at

least r active neighbors; the entire process of checking is thus completed in O(
∑N

i=1 di)

= O(|E|) time, where di represents the in-degree of node i. Thus, for a given initial

set, it takes O(N |E|) time to simulate the bootstrap percolation process. The result

then follows readily.

Remark 3.7.5 Based on the above result, one can check whether the approach de-

veloped in this chapter is applicable for a given system and network in polynomial

time. This result is in stark contrast with analogous results existing in the resilient

distributed consensus [87, 88] and optimization [89, 90] literature, since checking the

‘robustness’ condition needed for solving such problems is coNP-complete. Interest-

ingly, leveraging the equivalence described in Lemma 3.7.4, it is possible to show that

the strong r-robustness property described in Definition 3.7.2 is exhibited by various

large-scale complex network models such as the Barabási-Albert (BA) preferential at-

tachment model, the Erdős-Rényi random graph model, and the 2-dimensional random

geometric graph model. A discussion on this topic can be found in Appendix 3.11.

3.8 Simulations

Consider the system and network given by Figure 3.2. The state evolves as x[k+

1] = ax[k], with a = 2. Nodes 1, 2 and 3 are the source nodes and directly estimate the

state, i.e., yi[k] = x[k],∀i ∈ {1, 2, 3}. The rest of the nodes have zero measurements.

Node 1 is the only adversarial node in the network, and it simply transmits a constant

7Algorithm 1 essentially simulates the evolution of a bootstrap percolation process with threshold
r = (2f + 1), provided there is no adversarial activity during the distributed implementation of such
an algorithm.
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(a) (b)

Fig. 3.3. Consider the system and network in Fig. 3.2. Fig. (a) depicts
how a single adversary, namely node 1, can cause the estimation errors
of all the non-source regular nodes (namely, nodes 4-7) to diverge when
a non-resilient distributed observer is employed. Fig. (b) shows hows the
proposed LFRE algorithm counteracts the effect of the adversary.

signal of magnitude ε = 0.001 to each of its neighbors at every time-step. Each regular

source node updates its state estimate based on a standard Luenberger observer as

follows:

x̂i[k + 1] = ax̂i[k] + li(yi[k]− x̂i[k]), i ∈ {2, 3}, (3.4)

with the observer gain li set to 1.5 (this gain is simply chosen to ensure stability). We

first consider a scenario where each non-source node updates its estimate as follows:

x̂i[k + 1] = a
∑

l∈N (j)
i
w

(j)
il x̂l[k], where the weights form a convex combination, and

N (j)
i represents the neighbors of node i in the MEDAG shown in Figure 3.2(b).8

If node 1 were to update its estimate as per (3.4), then it can be easily verified

analytically that all nodes would be able to track the state asymptotically (see [58]

for details). However, as seen from Figure 3.3(a), a single adversarial node (node 1 in

this case) transmitting a small constant signal can cause the estimates of all the non-

source nodes to diverge. This example demonstrates that although the underlying

network is strongly 3-robust (i.e., has enough built-in redundancy to deal with a single

8For this scalar system, there is only one mode, i.e., j = 1.
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adversarial node9), the non-resilient distributed observer employed above proves to

be inadequate in the face of attacks. However, as seen from Figure 3.3(b), the LFRE

algorithm complements the robust network structure and succeeds in counteracting

the adversarial attack. For all simulations, x[0] = 0.5, and x̂i[0], i ∈ V is a random

number between 0 and 1.

3.9 Chapter Summary

In this chapter, we studied the problem of collaboratively estimating the state

of an LTI system subject to worst-case adversarial behavior. For the attack models

under consideration, we identified certain necessary conditions that need to be sat-

isfied by any system and network for the problem posed in this chapter to have a

feasible solution. We then developed a local-filtering algorithm to enable each non-

compromised node to recover the entire state. Finally, using a topological property

called strong r-robustness, we characterized networks that guarantee success of our

proposed strategy. Two notable features of our approach are as follows: (i) each step

of our approach admits an attack-resilient, completely distributed implementation

provided certain graph-theoretic conditions are met; and (ii) these graph-theoretic

conditions can be checked in polynomial time.

3.10 Omitted Proofs

3.10.1 Proof of Theorem 3.3.3

Proof “(i)=⇒(ii)” We prove by contraposition. Suppose statement (ii) is violated

for some node i ∈ V , i.e., there exists a set Di such that its removal from G causes the

pair (A,Ci∪Pi) to become undetectable (where Di and Pi have the same meaning as

in the statement of Theorem 3.3.3). It then follows that F = V \ {i∪Pi} is a critical

set. Suppose it is also a minimal critical set. We construct G ′ by adding directed

9For this example, we assume that node 1 misbehaves only during the estimation phase. Hence,
Theorem 3.7.3 is applicable.
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edges from a virtual node s to each node in F .10 Observe that H = Di satisfies

all the properties of an f -total pair cut w.r.t. s. In particular, Y = {i ∪ Pi} and

X = {V \ {Di ∪ Y}}∪ {s}. Thus, statement (i) is violated. A similar argument holds

when F contains a minimal critical set.

“(i)⇐=(ii)” We again prove by contraposition. Suppose statement (i) is violated,

i.e., there exists an f -total pair cut H w.r.t. a virtual node s corresponding to some

minimal critical set F . Consider a node i in Y (recall that Y is non-empty based on

Definition 3.3.3). First consider the case when node i is not reachable from any node

in H in the graph G. It then follows that in the graph G, directed paths to node i can

only exist from the set Y . But since i ∈ Y and (A,CY) is not detectable, it is trivially

impossible for node i to estimate the state. We thus focus on the case where node i is

reachable from a certain set of nodes, say Di, within the set H. Since |H| ≤ 2f and

Di ⊆ H, we have that |Di| ≤ 2f . It can be easily argued that the removal of Di from

G results in an induced subgraph where node i can only be reached from the set Y .

In other words, the set Pi, as defined in the statement of Theorem 3.3.3, is a subset

of Y . As (A,CY) is not detectable, it follows that (A,Ci∪Pi) is not detectable either,

and thus statement (ii) is violated.

3.10.2 Proof of Theorem 3.5.1

Proof Let A be the (unknown) set of f -local adversaries, and consider R = V \ A.

Given a node i ∈ R, the state vector z[k] can be partitioned into the components

zOi [k] and zOi [k] that correspond to the detectable and undetectable eigenvalues, re-

spectively, of node i. Based on Lemma 3.4.3, we know that node i can estimate zOi [k]

asymptotically via a locally constructed Luenberger observer. It remains to show that

node i can recover zOi [k], or in other words, for each λj ∈ Oi, we need to prove that

limk→∞ ‖ẑ(j)
i [k]−z(j)[k]‖ = 0. To this end, consider a non-real eigenvalue λj ∈ ΩU(A).

10Throughout this proof, we drop the subscript on G′
,F and s, unlike the notation in Section 3.3.

This is done since the subscript i is used to denote sets defined w.r.t. a node i in this proof.
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As G contains a MEDAG for each λj ∈ ΩU(A), the sets {L(j)
0 ,L(j)

1 , · · · ,L(j)
q , · · · L(j)

Tj
}

form a partition of the set R. We prove that each node in R can asymptotically

estimate z(j)[k] by inducting on the level number q.

For q = 0, by definition of the set L(j)
0 , all nodes in L(j)

0 are regular and belong to

the set Sj, i.e., λj ∈ Oi for each node i in L(j)
0 . Thus, by Lemma 3.4.3, each node in

level 0 can estimate z(j)[k] asymptotically. Notice that for any node i belonging to a

level q, where 1 ≤ q ≤ Tj, we have λj ∈ Oi. Consider a node i in L(j)
1 and let its error

in estimation of the component z(jm)[k] be denoted by e
(jm)
i [k] , ẑ

(jm)
i [k] − z(jm)[k].

The estimation errors of the individual components are aggregated in the vector

e
(j)
i [k] = ẑ

(j)
i [k] − z(j)[k]. Subtracting z(j)[k + 1] from both sides of equation (3.3),

noting that z(j)[k + 1] = W(λj)z
(j)[k] (based on the dynamics given by (3.1)), and

using (3.2), we obtain

e
(j)
i [k + 1] = W(λj)


∑

l∈M(j1)
i [k]

w
(j1)
il [k]e

(j1)
l [k]

...∑
l∈M

(jσj)

i [k]
w

(jσj)
il [k]e

(jσj)
l [k]


︸ ︷︷ ︸

ē
(j)
i [k]

, (3.5)

where σj = 2aA(λj) (since λj is non-real). For arriving at (3.5), we used the fact

that
∑

l∈M(jm)
i [k]

w
(jm)
il [k] = 1 for every component m of z(j)[k]. We now analyze the

error dynamics (3.5). To this end, for each component m of the vector z(j)[k], we

partition the set N (j)
i into the sets U (jm)

i [k], J (jm)
i [k], and M(jm)

i [k], such that the

sets U (jm)
i [k] and J (jm)

i [k] contain f nodes each, with the highest and lowest estimate

values for z(jm)[k] respectively, transmitted to node i at time-step k, and M(jm)
i [k]

contains the rest of the nodes in N (j)
i . According to the update rule (3.2), node i only

uses estimates from the set M(jm)
i [k] (which is non-empty at all time-steps based

on the properties of a MEDAG) to compute the quantity z̄
(jm)
i [k]. Now, for any

component m of z(j)[k], consider the following two cases. (i) M(jm)
i [k] ∩ A = ∅, i.e.,

there are no adversarial nodes in the set M(jm)
i [k]: in this case, all the nodes in the

setM(jm)
i [k] are regular and belong to L(j)

0 (as N (j)
i ∩R ⊆ L

(j)
0 ). (ii)M(jm)

i [k]∩A is

non-empty, i.e., there are some adversarial nodes in the set M(jm)
i [k]: based on the
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f -local adversarial model, it is apparent that each of the sets U (jm)
i [k] and J (jm)

i [k]

contain at least one regular node belonging to L(j)
0 . Let u and v be two such regular

nodes belonging to U (jm)
i [k] and J (jm)

i [k], respectively. Based on the definitions of

the sets U (jm)
i [k], J (jm)

i [k], and M(jm)
i [k], we have ẑ

(jm)
v [k] ≤ ẑ

(jm)
l [k] ≤ ẑ

(jm)
u [k], and

hence e
(jm)
v [k] ≤ e

(jm)
l [k] ≤ e

(jm)
u [k], for every node l ∈ M(jm)

i [k]. In particular, since

u, v ∈ L(j)
0 , it follows that for any node l ∈ M(jm)

i [k], e
(jm)
min [k] ≤ e

(jm)
l [k] ≤ e

(jm)
max [k],

where e
(jm)
min [k] = min

u∈L(j)
0
e

(jm)
u [k] and e

(jm)
max [k] = max

u∈L(j)
0
e

(jm)
u [k]. This property

holds for every component m of z(j)[k]. Analyzing each of the two cases, we infer that

at every time-step k, each component of the vector ē
(j)
i [k] in (2.15) lies in the convex

hull of the corresponding components of the error vectors e
(j)
u [k], u ∈ L(j)

0 = Sj ∩ R.

Based on Lemma 3.4.3, we have that limk→∞ e
(j)
u [k] = 0, ∀u ∈ Sj ∩ R, and hence it

follows that ẑ
(j)
i [k] converges asymptotically to z(j)[k] for every regular node i in L(j)

1 .

Suppose the result holds for all levels from 0 to q (where 1 ≤ q ≤ Tj − 1). It

is easy to see that the result holds for all regular nodes in L(j)
q+1 as well, by noting

the following. (i) A regular node i ∈ L(j)
q+1 has N (j)

i ∩ R ⊆
⋃q
r=0 L

(j)
r . (ii) For each

i ∈ L(j)
q+1, a similar analysis reveals that at every every time-step k, each component

of the vector ē
(j)
i [k] lies in the convex hull of the corresponding components of the

error vectors e
(j)
u [k], u ∈

⋃q
r=0 L

(j)
r . The desired result then follows from the induction

hypothesis. An identical argument can be sketched for a real eigenvalue λj ∈ ΩU(A),

and thus the result holds for any λj ∈ ΩU(A). We arrive at the conclusion that every

node i ∈ R can asymptotically estimate z(j)[k] for every eigenvalue λj ∈ Oi. Thus,

each node i ∈ R can asymptotically estimate z[k], and hence x[k] = Tz[k].

3.10.3 Proof of Theorem 3.7.3

Proof For sufficiency, it is easily noted that the conditions stated in the theorem

guarantee termination of the MEDAG construction algorithm for every λj ∈ ΩU(A).

The rest of the proof for sufficiency follows identical arguments as the proof of The-

orem 3.7.2.
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For proving necessity, we first note that the proposed algorithm summarized in

Section 3.6.1 is applicable only if the MEDAG construction algorithm (Algorithm 1)

terminates for each λj ∈ ΩU(A) and returns a subgraph Gj satisfying the properties

of a MEDAG for all f -local sets containing V \ R′. Here R′ denotes the set of

nodes that behave regularly during the execution of Algorithm 1. Based on the

hypothesis of the theorem, since R′ = V , the existence of a MEDAG Gj ∀λj ∈ ΩU(A)

is necessary in this case for running the LFRE algorithm. The rest of the proof

proceeds via contradiction. Suppose G is not strongly (2f + 1)-robust w.r.t. Sj for

some λj ∈ ΩU(A) and yet there exists a MEDAG Gj for λj. Since G is not strongly

(2f +1)-robust w.r.t. λj, there exists a non-empty set C ⊆ V \Sj that is not (2f +1)-

reachable. Consider the trivial f -local set A = ∅. The subgraph Gj must contain a

partition ofR = V\A = V into levels that satisfy the second property of a MEDAG in

Definition 3.5.1. With this point in mind, let C be partitioned as C =
⋃q
r=1Fr, where

Fr = C ∩L(j)
nr for some set of integers {n1, · · · , nq|1 ≤ ni ≤ Tj ∀i ∈ {1, · · · , q}}. Here,

{L(j)
nr }qr=1 represents a subset of the levels that partition R in the MEDAG Gj (that

exists based on the hypothesis). Without loss of generality, let n1 < n2 < · · · < nq.

Then, from the definition of a MEDAG, it follows that for any i ∈ Fn1 , N
(j)
i contains

elements from only V \ C. As C is not (2f + 1)-reachable, |N (j)
i | < (2f + 1), thereby

violating the first property of a MEDAG in Definition 3.5.1. We thus arrive at a

contradiction, and the proof is complete.

3.11 The Strong r-robustness Property of Random Graphs

The focus of this section is to address the following question. Given a dynamical

system and an associated large-scale complex sensor network monitoring the system,

under what conditions is the system and network pair r-feasible? To provide an

answer to this question, we study the ‘strong r-robustness’ property in three relatively

common random graph models for large-scale complex networks, namely the Barabási-
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Albert (BA) preferential attachment model, the Erdős-Rényi random graph model,

and the 2-dimensional random geometric graph model.

Consider a scenario where we are given a dynamical system and an associated

wireless sensor network such that the system and network pair is r-feasible, and

hence, resilient to adversarial attacks. We wish to expand the network via addition of

more sensors without disrupting the r-feasibility property, i.e., we intend to tolerate

the same number of adversaries as earlier. As the first property in Proposition 3.7.1

suggests, this can be achieved by continually adding new nodes with incoming edges

from at least r nodes in the existing network. The specific construction where the

neighbors of a new node are selected with a probability proportional to the number of

edges they already have leads to the BA preferential attachment model. Such a model

is thought of as a plausible mechanism for the formation of many real-world complex

networks [108]. Based on our foregoing discussion, it then follows that such real-world

networks would facilitate the LFRE dynamics introduced in Section 3.4.2, and would

hence be resilient to the worst-case attack model considered in this chapter.

Next, we turn our attention to one of the most common mathematical models for

large-scale networks, namely Erdős-Rényi random graphs [109]. We denote an Erdős-

Rényi random graph on N nodes by GN,p, where all possible edges between pairs of

different nodes are present independently and with the same probability p. We further

note that p is in general a function of the network size N . From the perspective of

a network designer, we will be interested in answering the following questions. (i)

How should the size of the source sets Sj (for each λj ∈ ΩU(A)) scale with the size

of the network to maintain r-feasibility in an Erdős-Rényi random graph? (ii) Which

nodes should be chosen as the source nodes? Prior to answering these questions, we

briefly remark on the notation to be used for the remainder of this section. The term

w.h.p. (with high probability) will be used for events with probability tending to 1

as N → ∞. Given two non-negative sequences aN and bN , the notation aN � bN
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will convey the same meaning as aN = o(bN). To make use of Lemma 3.7.4, we first

recall a few definitions from [107]. Given an integer r ≥ 2, define

Tc(N, p) ,

(
(r − 1)!

Npr

) 1
(r−1)

, Ac(N) ,

(
1− 1

r

)
Tc(N, p). (3.6)

We have the following result for an Erdős-Rényi random graph model.

Proposition 3.11.1 Given an LTI system (2.1), a measurement model (2.2), and a

network modeled by an Erdős-Rényi random graph GN,p, suppose that for each λj ∈

ΩU(A), the source set Sj(N) is chosen randomly.11 Then, the following are true.

(i) Let p = p(N) be such that N−1 � p� N−
1
r . If for each λj ∈ ΩU(A),

|Sj(N)|
Ac(N)

≥

1 + δ, for some δ > 0, and |Sj(N)| ≤ N
2

, then GN,p is r-feasible w.h.p. if and

only if Np− (lnN + (r − 1)ln lnN)→∞ as N →∞.

(ii) Let p = p(N) be such that p � N−
1
r . If for each λj ∈ ΩU(A), |Sj(N)| ≥ r,

then GN,p is r-feasible w.h.p.

Proof (i) If the conditions in part (i) are met, then for each λj ∈ ΩU(A), Sj perco-

lates via bootstrap percolation with threshold r on GN,p w.h.p. based on [107, The-

orem 3.2]. Lemma 3.7.4 then implies that GN,p is strongly r-robust w.r.t. each such

source set Sj w.h.p., i.e., GN,p is r-feasible w.h.p. . The proof for part (ii) follows

similarly by leveraging [107, Theorem 5.8] and Lemma 3.7.4.

Remark 3.11.1 We glean the following insights from the above result. First, we ob-

serve that if either condition (i) or condition (ii) is met, then our proposed algorithm

will enable each regular node to asymptotically estimate the state of the system w.h.p.

in the presence of any b r−1
3
c locally-bounded set of Byzantine adversaries. This is a

direct consequence of Theorem 3.7.2. The first part of Proposition 3.11.1 indicates

that although the source sets can be chosen randomly, their size needs to scale appro-

priately with the size of the network to maintain r-feasibility. The second part states

11By choosing Sj(N) randomly, we imply that the measurement set needed to detect λj is allocated
to |Sj(N)| nodes picked uniformly at random. The notation Sj(N) is used to explicitly point out
that the size of the source sets scales with the size of the network.
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that if the probability of edge formation is large enough, then it suffices to pick source

sets of constant size equal to the bare minimum required for achieving r-feasibility

(which equals r based on part (ii) of Proposition 3.7.1).

Among the three random graph models mentioned earlier, the one most relevant to

our cause is the two-dimensional random geometric graph (RGG) model [110]. RGGs

are typically used to model networks where a notion of spatial proximity governs the

interaction between the nodes. A wireless sensor network where randomly deployed

nodes communicate with nodes only in a geographical vicinity, constitutes an ideal

setup for an RGG model [111]. We will consider a two-dimensional RGG model

generated by first placing N nodes randomly within the unit square [0, 1]2. Undirected

edges are placed between two nodes if and only if the Euclidean distance between

such nodes is at most d(N), where d(N) is a positive number that may depend on

the network size N . We will denote such a RGG by GN,d(N).

Like the Erdős-Rényi case, our focus will be on understanding how the source

sets should be chosen to ensure r-feasibility of GN,d(N) with high probability. To

provide such a characterization, we first recall a few functions from [110]. Let H(x) ,

x lnx − x + 1 be defined on [0,∞) and J(x) , lnx − 1 + x−1 be defined on (0,∞).

Furthermore, let J−1
R : [0,∞) → [1,∞) denote the inverse of J(x) when the domain

of J(x) is [1,∞). We then have the following result.

Proposition 3.11.2 Given an LTI system (2.1) and a measurement model (2.2), let

the communication graph be modeled by the RGG GN,d(N), where d(N) =
√

a lnN
πN

and

a > 1. For each λj ∈ ΩU(A), let a node be chosen as a source node for λj with a

probability p independently of the other nodes in the network. Let r = γa lnN , where

γ ∈ (0, 1
5π

). Suppose a ≥ 5π
H(5πγ)

and

p ≥ min

{
γ,

5πγ

J−1
R ( 1

aγ
)

}
. (3.7)

Then, GN,d(N) is r-feasible.12

12A RGG GN,d(N) is connected w.h.p. for d(N) >
√

lnN
πN . The choice of a > 1 thus allows one to

deal with an asymptotically connected GN,d(N).
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Proof For each λj ∈ ΩU(A), if the source set Sj is chosen as described above, then

it percolates GN,d(N) w.h.p. if the conditions of the proposition are met [110, Theorem

4]. The result then follows from Lemma 3.7.4.

Remark 3.11.2 In an attack-prone wireless sensor network, one might be interested

in tolerating f -local adversarial sets where the paramater f scales with the size of

the network. Such a possibility is captured by Proposition 3.11.2, based on which,

bγa lnN−1
3
c-local Byzantine adversarial sets can be accounted for by our algorithm.
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4. DISTRIBUTED STATE ESTIMATION OVER

TIME-VARYING GRAPHS: EXPLOITING THE

AGE-OF-INFORMATION

In this chapter, we study the problem of designing a distributed observer for an LTI

system over a time-varying communication graph. Existing approaches to this prob-

lem either (i) make restrictive assumptions on the dynamical model; or (ii) make

restrictive assumptions on the sequence of communication graphs; or (iii) require

multiple consensus iterations between consecutive time-steps of the dynamics; or (iv)

require higher-dimensional observers. In contrast, we develop a distributed observer

that operates on a single time-scale, is of the same dimension as that of the state,

and works under mild assumptions. Specifically, our communication model only re-

quires strong-connectivity to be preserved over non-overlapping, contiguous intervals

that are even allowed to grow unbounded over time. We show that under suitable

conditions that bound the growth of such intervals, joint observability is sufficient to

track the state of any discrete-time LTI system exponentially fast, at any desired rate.

We also show that under a suitable selection of the observer gains, one can achieve

finite-time convergence. The key to our approach is the notion of a “freshness-index”

that keeps track of the age-of-information being diffused across the network. Such

indices enable nodes to reject stale estimates of the state, and, in turn, contribute

to stability of the error dynamics. Our proof of convergence is self-contained, and

employs simple arguments from linear system theory and graph theory.

4.1 Introduction

Given a discrete-time LTI system x[k + 1] = Ax[k], and a linear measurement

model y[k] = Cx[k], a classical result in control theory states that one can design
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an observer that generates an asymptotically correct estimate x̂[k] of the state x[k],

if and only if the pair (A,C) is detectable [112]. Additionally, if the pair (A,C) is

observable, then one can achieve exponential convergence at any desired convergence

rate. Over the last couple of decades, significant effort has been directed towards

studying the distributed counterpart of the above problem, wherein observations of

the process are distributed among a set of sensors modeled as nodes of a communica-

tion graph [1, 17, 26, 27, 30–32, 58, 102, 113–115]. A fundamental question that arises

in this context is as follows: What are the minimal requirements on the measurement

structure of the nodes and the underlying communication graph that guarantee the

existence of a distributed observer?1 The question posed above was answered only

recently in [1, 30, 58, 102, 113, 114] for static graphs. However, when the underlying

network changes with time, very little is known about the distributed state estimation

problem - a gap that we intend to bridge in this chapter. Our study is motivated

by applications in environmental monitoring tasks using mobile robot teams [4, 5],

where time-varying communication graphs arise naturally either as a consequence

of robot-mobility, or due to packet drops and link failures typical in wireless sensor

networks [116].

4.1.1 Related Work

The existing literature on the design of distributed observers can be broadly clas-

sified in terms of the assumptions made on the system model, the observation model,

and the network structure. Recent works on this topic [1, 30, 58, 102, 113, 114] that

make minimal system- and graph-theoretic assumptions can be further classified based

on a finer set of attributes, as follows. (i) Does the approach require multiple con-

sensus iterations between two consecutive time-steps of the dynamics?2 (ii) What

is the dimension of the estimator maintained by each node? (iii) Is the convergence

1Recall from Chapter 2 that by a distributed observer, we imply a set of state estimate update and
information exchange rules that enable each node to track the entire state asymptotically.
2Such approaches, referred to as two-time-scale approaches, incur high communication cost, and
might hence be prohibitive for real-time applications.
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asymptotic, or in finite-time? (iv) In case the convergence is asymptotic, can the

convergence rate be controlled? The techniques proposed in [1, 30, 58, 102, 113, 114]

operate on a single-time-scale, and those in [58,102,113,114] require observers of di-

mension no more than that of the state of the system. The notion of convergence in

each of the papers [1,30,58,102,113,114] is asymptotic; the ones in [30,102,114] can

achieve exponential convergence at any desired rate. For dynamic networks, there is

much less work. Two recent papers [17] and [117] provide theoretical guarantees for

certain specific classes of time-varying graphs; while the former proposes a two-time-

scale approach, the latter develops a single-time-scale algorithm. However, the extent

to which such results can be generalized has remained an open question.

Contributions: The main contribution of this chapter is the development of

a single-time-scale distributed state estimation algorithm that requires each node to

maintain an estimator of dimension equal to that of the state (along with some simple

counters), and works under assumptions that are remarkably mild in comparison

with those in the existing literature. Specifically, in terms of the observation model,

we only require joint observability, i.e., the state is observable w.r.t. the collective

observations of the nodes. This assumption is quite standard, and can be relaxed to

joint detectability, with appropriate implications for the convergence rate.

However, the key departure from existing literature comes from the generality of

our communication model, introduced formally in Section 4.2. Based on this model,

we require strong-connectivity to be preserved over non-overlapping, contiguous in-

tervals that can even grow linearly with time at a certain rate. In other words, we

allow the inter-communication intervals between the nodes to potentially grow un-

bounded. Even under the regime of such sparse communications, we establish that

our proposed approach can track the state of any discrete-time LTI system exponen-

tially fast, at any desired convergence rate. While all the works on distributed state

estimation that we are aware of provide an asymptotic analysis, estimating the state

of the system in finite-time might be crucial in certain safety-critical applications.

To this end, we show that under a suitable selection of the observer gains, one can
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achieve finite-time convergence based on our approach. To put our results into con-

text, it is instructive to compare them with the work closest to ours, namely [17].

In [17], the authors study a continuous-time analog of the problem under considera-

tion, and develop a solution that leverages an elegant connection to the problem of

distributed linear-equation solving [118]. In contrast to our technique, the one in [17]

is inherently a two-time-scale approach, requires each node to maintain and update

auxiliary state estimates, and works under the assumption that the communication

graph is strongly-connected at every instant.

Our work is also related to the vast literature on consensus [119] and distributed

optimization [120] over time-varying graphs, where one assumes strong-connectivity

to be typically preserved over uniformly bounded intervals - a special case of our

communication model. It is important to recognize that, in contrast to these set-

tings, the problem at hand requires tracking potentially unstable external dynamics,

making the stability analysis considerably more challenging. In particular, one can

no longer directly leverage convergence properties of products of stochastic matrices.

From a system-theoretic point of view, the error dynamics under our communication

model evolves based on a switched linear system, where certain modes are potentially

unstable. Thus, one way to analyze such dynamics is by drawing on ideas from the

switched system stability literature [121]. However, such an analysis can potentially

obscure the role played by the network structure. Instead, we directly exploit the

interplay between the structure of the changing graph patterns on the one hand,

and the evolution of the estimation error dynamics on the other. Doing so, we pro-

vide a comprehensive stability analysis of our estimation algorithm employing simple,

self-contained arguments from linear system theory and graph theory.

The key idea behind our approach is the use of a suitably defined “freshness-

index” that keeps track of the age-of-information being diffused across the network.

Loosely speaking, the “freshness-index” of a node quantifies the extent to which its

estimate of the state is outdated. Exchanging such indices enables a node to assess,

in real-time, the quality of the estimate of a neighbor. Accordingly, it can reject
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estimates that are relatively stale - a fact that contributes to the stability of the error

dynamics. We point out that while this is perhaps the first use of the notion of age-

of-information (AoI) in a networked control/estimation setting, such a concept has

been widely employed in the study of various queuing-theoretic problems arising in

wireless networks [122–124].3

To sum up, in this chapter, we propose the first single-time-scale distributed state

estimation algorithm that provides both finite-time and exponentially fast conver-

gence guarantees, under significantly milder assumptions on the time-varying graph

sequences than those in the existing literature.

The results in this chapter appeared in a preliminary form as [125]. These results

were then significantly generalized in the pre-print [126].

4.2 Problem Formulation and Background

System and Measurement Model: As in Chapter 2, we are interested in

collaborative state estimation of a discrete-time LTI system of the form:

x[k + 1] = Ax[k], (4.1)

where k ∈ N is the discrete-time index, A ∈ Rn×n is the system matrix, and x[k] ∈ Rn

is the state of the system.4 A network of sensors, modeled as nodes of a communica-

tion graph, obtain partial measurements of the state of the above process as follows:

yi[k] = Cix[k], (4.2)

where yi[k] ∈ Rri represents the measurement vector of the i-th node at time-step

k, and Ci ∈ Rri×n represents the corresponding observation matrix. Let y[k] =[
yT1 [k] · · · yTN [k]

]T
and C =

[
CT

1 · · · CT
N

]T
represent the collective measurement

3The notion of age-of-information (AoI) was first introduced in [122] as a performance metric to keep
track of real-time status updates in a communication system. In a wireless network, it measures
the time elapsed since the generation of the packet most recently delivered to the destination. In
Section 4.4, we will see how such a concept applies to the present setting.
4Recall that we use N and N+ to denote the set of non-negative integers and the set of positive
integers, respectively.
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vector at time-step k, and the collective observation matrix, respectively. The goal

of each node i in the network is to generate an asymptotically correct estimate x̂i[k]

of the true dynamics x[k]. It may not be possible for any node i in the network

to accomplish this task in isolation, since the pair (A,Ci) may not be detectable

in general. Throughout the chapter, we will only assume that the pair (A,C) is

observable; the subsequent developments can be readily generalized to the case when

(A,C) is detectable.

Communication Network Model: As is evident from the above discussion,

information exchange among nodes is necessary for all nodes to estimate the full

state. At each time-step k ∈ N, the available communication channels are modeled

by a directed communication graph G[k] = (V , E [k]), where V = {1, . . . , N} represents

the set of nodes, and E [k] represents the edge set of G[k] at time-step k. Specifically,

if (i, j) ∈ E [k], then node i can send information directly to node j at time-step k; in

such a case, node i will be called a neighbor of node j at time-step k. We will use

Ni[k] to represent the set of all neighbors (excluding node i) of node i at time-step k.

In Chapter 2, we studied the special case when G[k] = G ∀k ∈ N, i.e., when G is

a static, directed communication graph. For this setting, it was shown that the nec-

essary and sufficient condition (on the system and network) to solve the distributed

state estimation problem is the joint detectability of each source component of G.5

The subject of this chapter is to extend the above result to scenarios where the under-

lying communication graph is allowed to change over time. To this end, let the union

graph over an interval [k1, k2], 0 ≤ k1 ≤ k2, denoted
k2⋃

τ=k1

G[τ ], indicate a graph with

vertex set equal to V , and edge set equal to the union of the edge sets of the individual

graphs appearing over the interval [k1, k2]. Based on this convention, we now formally

describe the communication patterns (induced by the sequence {G[k]}∞k=0) that are

considered in this paper. We assume that there exists a sequence I = {t0, t1, . . .} of

increasing time-steps with t0 = 0 and each ti ∈ N, satisfying the following conditions.

5Recall that a source component of a static, directed graph is a strongly connected component with
no incoming edges.
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(C1) Define the mapping f : I → N+ as f(tq) = tq+1 − tq,∀tq ∈ I. We assume that

f(tq) is a non-decreasing function of its argument.

(C2) For each k ∈ N, let m(k) , max{tq ∈ I : tq ≤ k}, and M(k) , min{tq ∈ I : tq >

k}. Define g : N → N+ as g(k) = M(k) −m(k) = f(m(k)). Then, we assume

that the following holds:

lim sup
k→∞

2(N − 1)g(k)

k
= δ < 1. (4.3)

(C3) For each tq ∈ I, we assume that
tq+1−1⋃
τ=tq

G[τ ] is strongly-connected.

Let us discuss what the above conditions mean. Condition (C1) in conjunction

with condition (C3) tells us that the intervals over which strong-connectivity is pre-

served are non-decreasing in length (evident from the monotonicity of the function

f(·)).6 Essentially, our aim here is to come up with distributed estimators that func-

tion correctly despite sparse communication; hence, we allow for potentially growing

inter-communication intervals. Since we place no assumptions at all on the spectrum

of the A matrix, stability of the estimation error process imposes natural restrictions

on how fast the inter-communication intervals can be allowed to grow. Condition

(C2) formalizes this intuition by constraining such intervals to grow at most lin-

early at a certain rate. Notably, conditions (C1)-(C3) cover a very general class of

time-varying graph sequences. In particular, we are unaware of any other work that

allows the inter-communication intervals to grow unbounded for the problem under

consideration.

Consider the following two examples. (i) The mapping f satisfies f(tq) = T,∀tq ∈

I, where T is some positive integer. (ii) The mapping f satisfies f(tq) = b
√
tq + 1c,∀tq ∈

I. It is easy to verify that (C2) is satisfied in each case. While example (i) repre-

sents the standard “joint strong-connectivity” setting where the inter-communication

intervals remain bounded, example (ii) deviates from existing literature by allowing

the inter-communication intervals to grow unbounded.

6Our results can be generalized to account for the case when f(·) is non-monotonic by suitably
modifying condition (C2).
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Background: For communication graphs satisfying conditions (C1)-(C3) as de-

scribed above, our objective will be to design a distributed algorithm that ensures

limk→∞ ‖x̂i[k]− x[k]‖ = 0,∀i ∈ V , with x̂i[k] representing the estimate of the state

x[k] maintained by node i ∈ V . To this end, we recall the following result from

Chapter 2.

Lemma 4.2.1 Given a system matrix A, and a set of N sensor observation matrices

C1,C2, . . . ,CN , define C ,
[
CT

1 · · · CT
N

]T
. Suppose (A,C) is observable. Then,

there exists a similarity transformation matrix T that transforms the pair (A,C) to

(Ā, C̄), such that

Ā =


A11 0

A21 A22 0
...

...
. . .

...

AN1 AN2 · · · AN(N−1) ANN

 ,

C̄ =


C̄1

C̄2
...

C̄N

 =


C11 0

C21 C22 0
...

...
...

...

CN1 CN2 · · ·CN(N−1) CNN

 ,

(4.4)

and the pair (Aii,Cii) is observable ∀i ∈ {1, 2, . . . , N}.

We use the matrix T given by the above lemma to perform the coordinate trans-

formation z[k] = T−1x[k], yielding:

z[k + 1] = Āz[k],

yi[k] = C̄iz[k], ∀i ∈ {1, . . . , N},
(4.5)

where Ā = T−1AT and C̄i = CiT are given by (4.4). Commensurate with the

structure of Ā, the vector z[k] is of the following form:

z[k] =
[
z(1)[k]

T · · · z(N)[k]
T
]T
, (4.6)



119

where z(j)[k] will be referred to as the j-th sub-state. By construction, since the pair

(Ajj,Cjj) is locally observable w.r.t. the measurements of node j, node j will be

viewed as the unique source node for sub-state j. In this sense, the role of node j

will be to ensure that each non-source node i ∈ V \ {j} maintains an asymptotically

correct estimate of sub-state j. For a time-invariant strongly-connected graph, this

was achieved in Chapter 2 by first constructing a spanning tree rooted at node j,

and then requiring nodes to only listen to their parents in such a tree for estimating

sub-state j. We showed that the resulting unidirectional flow of information from

the source j to the rest of the network guarantees stability of the error process for

sub-state j.

However, the above strategy is no longer applicable when the underlying commu-

nication graph is time-varying, for the following reasons. (i) For a given sub-state

j, there may not exist a common spanning tree rooted at node j in each graph

G[k], k ∈ N. (ii) Assuming that a specific spanning tree rooted at node j is guaran-

teed to repeat at various points in time (not necessarily periodically), is restrictive,

and qualifies as only a special case of conditions (C1)-(C3). (iii) Suppose for simplicity

that G[k] is strongly-connected at each time-step (as in [17]), and hence, there exists

a spanning tree Tj[k] rooted at node j in each such graph. For estimating sub-state

j, suppose consensus at time-step k is performed along the spanning tree Tj[k]. As

we demonstrate in the next section, switching between such spanning trees can lead

to unstable error processes over time. Thus, if one makes no further assumptions

on the system model beyond joint observability, or on the sequence of communica-

tion graphs beyond conditions (C1)-(C3), ensuring stability of the estimation error

dynamics becomes a challenging proposition. Nonetheless, we develop a simple al-

gorithm in Section 4.4 that bypasses the above problems. In the next section, we

provide an example that helps to build the intuition behind this algorithm.
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x[k + 1] = ax[k]

1

2 3

(a)

x[k + 1] = ax[k]

1

2 3

(b)

Fig. 4.1. An LTI system is monitored by a network of 3 nodes, where the
communication graph G[k] switches between the two graphs shown above.

Fig. 4.2. Estimation error plots of the nodes for the model in Figure 4.1.
Simulations are performed for a model where a = 2. The figure on the left
corresponds to the case where consensus weights are distributed uniformly
among neighbors, while the one on the right is the case where weights are
placed along a tree rooted at node 1.

4.3 An Illustrative Example

Consider a network of 3 nodes monitoring a scalar unstable process x[k + 1] =

ax[k], as shown in Figure 4.1. The communication graph G[k] switches between the

two topologies shown in Figure 4.1. Specifically, G[k] is the graph in Figure 4.1(a) at

all even time-steps, and the one in 4.1(b) at all odd time-steps. Node 1 is the only

node with non-zero measurements, and thus acts as the source node for this network.
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Suppose for simplicity that it perfectly measures the state at all time-steps, i.e., its

state estimate is x̂1[k] = x[k],∀k ∈ N. Given this setup, a standard consensus based

state estimate update rule would take the form (see for example [1, 17,58]):

x̂i[k + 1] = a

 ∑
j∈Ni[k]∪{i}

wij[k]x̂j[k]

 , i ∈ {2, 3}, (4.7)

where the weights wij[k] are non-negative, and satisfy
∑

j∈Ni[k]∪{i}wij[k] = 1,∀k ∈ N.

The key question is: How should the consensus weights be chosen to guarantee stability

of the estimation errors of nodes 2 and 3? Even for this simple example, if such

weights are chosen naively, then the errors may grow unbounded over time. To see

this, consider the following two choices: (1) consensus weights are distributed evenly

over the set Ni[k] ∪ {i}, and (2) consensus weights are placed along the tree rooted

at node 1. In each case, the error dynamics are unstable, as depicted in Figure 4.2.

To overcome this problem, suppose nodes 2 and 3 are aware of the fact that node 1

has perfect information of the state. Since nodes 2 and 3 have no measurements of

their own, intuitively, it makes sense that they should place their consensus weights

entirely on node 1 whenever possible. The trickier question for node 2 (resp., node

3) is to decide when it should listen to node 3 (resp., node 2). Let us consider the

situation from the perspective of node 2. At time-step 0, it adopts the information

of node 1, and hence, the error of node 2 is zero at time-step 1. However, the error

of node 3 is not necessarily zero at time-step 1. Consequently, if node 2 places a

non-zero consensus weight on the estimate of node 3 at time-step 1, its error at time-

step 2 might assume a non-zero value. Clearly, at time-step 1, node 2 is better off

rejecting the information from node 3, and simply running open-loop. The main take-

away point here is that adoption or rejection of information from a neighbor should

be based on the quality of information that such a neighbor has to offer. In particular,

a node that has come in contact with node 1 more recently is expected to have better

information about the state than the other. Thus, to dynamically evaluate the quality

of an estimate, the above reasoning suggests the need to introduce a metric that keeps
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track of how recent that estimate is with respect to (w.r.t.) the estimate of the source

node 1. In the following section, we formalize this idea by introducing such a metric.

4.4 Algorithm

Building on the intuition developed in the previous section, we introduce a new

approach to designing distributed observers for a general class of time-varying net-

works. The main idea is the use of a “freshness-index” that keeps track of how delayed

the estimates of a node are w.r.t. the estimates of a source node. Specifically, for

updating its estimate of z(j)[k], each node i ∈ V maintains and updates at every time-

step a freshness-index τ
(j)
i [k]. At each time-step k ∈ N, the index τ

(j)
i [k] plays the

following role: it determines whether node i should adopt the information received

from one of its neighbors in Ni[k], or run open-loop, for updating ẑ
(j)
i [k], where ẑ

(j)
i [k]

represents the estimate of z(j)[k] maintained by node i. In case it is the former, it also

indicates which specific neighbor in Ni[k] node i should listen to at time-step k; this

piece of information is particularly important for the problem under consideration,

and ensures stability of the error process. The rules that govern the updates of the

freshness indices τ
(j)
i [k], and the estimates of the j-th sub-state z(j)[k], are formally

stated in Algorithm 2. In what follows, we describe each of these rules.

Discussion of Algorithm 2: Consider any sub-state j ∈ {1, . . . , N}. Each node

i ∈ V maintains an index τ
(j)
i [k] ∈ {ω} ∪ N, where ω is a dummy value. Specifically,

τ
(j)
i [k] = ω represents an “infinite-delay” w.r.t. the estimate of the source node

for sub-state j, namely node j, i.e., it represents that node i has not received any

information (either directly or indirectly) from node j regarding sub-state j up to

time-step k. For estimation of sub-state j, since delays are measured w.r.t. the

source node j, node j maintains its freshness-index τ
(j)
j [k] at zero for all time, to

indicate a zero delay w.r.t. itself. For updating its estimate of z(j)[k], it uses only its

own information, as is evident from Eq. (4.8).
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Algorithm 2

1: Initialization: τ
(j)
j [0] = 0, τ

(j)
i [0] = ω,∀i ∈ V \ {j}.

2: Update Rules for the Source Node: Node j maintains τ
(j)
j [k] = 0,∀k ∈ N.

It updates ẑ
(j)
j [k] as:

ẑ
(j)
j [k + 1] = Fjj ẑ

(j)
j [k] +

(j−1)∑
q=1

Gjqẑ
(q)
j [k] + Ljyj[k], (4.8)

where Fjj = (Ajj − LjCjj), Gjq = (Ajq − LjCjq), and Lj is an observer gain to

be designed later.

3: Update Rules for the Non-Source Nodes: Each non-source node i ∈ V \{j}

operates as follows.

4: Case 1: τ
(j)
i [k] = ω. Define M(j)

i [k] , {l ∈ Ni[k] : τ
(j)
l [k] 6= ω}. If M(j)

i [k] 6= ∅,

let u ∈ argmin
l∈M(j)

i [k]
τ

(j)
l [k]. Node i updates τ

(j)
i [k] and ẑ

(j)
i [k] as:

τ
(j)
i [k + 1] = τ (j)

u [k] + 1, (4.9)

ẑ
(j)
i [k + 1] = Ajj ẑ

(j)
u [k] +

(j−1)∑
q=1

Ajqẑ
(q)
i [k]. (4.10)

If M(j)
i [k] = ∅, then

τ
(j)
i [k + 1] = ω, (4.11)

ẑ
(j)
i [k + 1] = Ajj ẑ

(j)
i [k] +

(j−1)∑
q=1

Ajqẑ
(q)
i [k]. (4.12)

5: Case 2: τ
(j)
i [k] 6= ω. Define F (j)

i [k] , {l ∈ M(j)
i [k] : τ

(j)
l [k] < τ

(j)
i [k]}, where

M(j)
i [k] is as defined in line 4. If F (j)

i [k] 6= ∅, let u ∈ argmin
l∈F(j)

i [k]
τ

(j)
l [k]. Node

i then updates τ
(j)
i [k] as per (4.9), and ẑ

(j)
i [k] as per (4.10). If F (j)

i [k] = ∅, then

τ
(j)
i [k] is updated as

τ
(j)
i [k + 1] = τ

(j)
i [k] + 1, (4.13)

and ẑ
(j)
i [k] is updated as per (4.12).
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Every other node starts out with an “infinite-delay” ω w.r.t. the source (line 1 of

Algo. 2). The freshness-index of a node i ∈ V \ {j} changes from ω to a finite value

when it comes in contact with a neighbor with a finite delay, i.e., with a freshness-

index that is not ω (line 4 of Algo. 2). At this point, we say that τ
(j)
i [k] has been

“triggered”. Once triggered, at each time-step k, a non-source node i will adopt

the information of a neighbor l ∈ Ni[k] only if node l’s estimate of z(j)[k] is “more

fresh” relative to its own, i.e., only if τ
(j)
l [k] < τ

(j)
i [k].7 Among the set of neighbors

in M(j)
i [k] (if τ

(j)
i [k] has not yet been triggered), or in F (j)

i [k] (if τ
(j)
i [k] has been

triggered), node i only adopts the information (based on (4.10)) of the neighbor u

with the least delay. At this point, the delay of node i matches that of node u, and

this fact is captured by the update rule (4.9). In case node i has no neighbor that has

fresher information than itself w.r.t. sub-state j (where informativeness is quantified

by τ
(j)
i [k]), it increments its own freshness-index by 1 (as per (4.13)) to capture the

effect of its own information getting older, and runs open-loop based on (4.12). Based

on the above rules, at any given time-step k, τ
(j)
i [k] measures the age-of-information

of ẑ
(j)
i [k], relative to the source node j. This fact is established later in Lemma 4.7.2.

Finally, note that Algorithm 2 describes an approach for estimating z[k], and hence

x[k], since x[k] = Tz[k].

4.5 Performance Guarantees For Algorithm 2

4.5.1 Statement of the Results

In this section, we first state the theoretical guarantees afforded by Algorithm 2,

and then discuss their implications; proofs of these statements are deferred to Section

4.7.1 and 4.7.2. The following is the main result of this chapter.

7Under Case 1 or Case 2 in Algo. 2, when a node i ∈ V \ {j} updates τ
(j)
i [k] via (4.9), and ẑ

(j)
i [k]

via (4.10), we say that “i adopts the information of u at time k for sub-state j”; else, if it runs
open-loop, we say it adopts its own information.
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Theorem 4.5.1 Given an LTI system (4.1), and a measurement model (4.2), sup-

pose (A,C) is observable. Let the sequence of communication graphs {G[k]}∞k=0 sat-

isfy conditions (C1)-(C3) in Section 4.2. Then, given any desired convergence rate

ρ ∈ (0, 1), the observer gains L1, . . . ,LN can be designed in a manner such that the

estimation error of each node converges to zero exponentially fast at rate ρ, based on

Algorithm 2.

The next result states that under the conditions in Theorem 4.5.1, one can in fact

achieve finite-time convergence.

Proposition 4.5.1 (Finite-Time Convergence) Suppose the conditions stated in

Theorem 4.5.1 hold. Then, the observer gains L1, . . . ,LN can be designed in a manner

such that the estimation error of each node converges to zero in finite-time.

The next result follows directly from Prop. 4.5.1 and indicates that, when the

sequence of communication graphs exhibits certain structure, one can derive a closed

form expression for the maximum number of time-steps required for convergence.

Corollary 4.5.2 Suppose the conditions stated in Theorem 4.5.1 hold. Additionally,

suppose f(tq) ≤ T,∀tq ∈ I, where T ∈ N+. Then, the observer gains L1, . . . ,LN can

be designed in a manner such that the estimation error of each node converges to zero

in at most n+ 2N(N − 1)T time-steps.

Let us now discuss the implications of our results, and comment on certain aspects

of our approach.

Remark 4.5.3 The fact that a network of partially informed nodes can track the state

of a dynamical system with arbitrarily large eigenvalues, over inter-communication in-

tervals that can potentially grow unbounded, is non-obvious a priori. Our results in

Theorem 4.5.1 and Proposition 4.5.1 indicate that not only can this be done exponen-

tially fast at any desired rate, it can also be done in finite-time. In contrast, the result

closest to ours [17] assumes strong-connectivity at each time-step - an assumption

that is significantly stronger than what we make.
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Remark 4.5.4 Presently, our approach requires a centralized design phase where the

agents implement the multi-sensor decomposition in Section 4.2, and design their

observer gains to achieve the desired convergence rate as outlined in the proof of The-

orem 4.5.1. This is of course a limitation, but one that is common to all existing

approaches [1, 17, 26, 30–32, 58, 102, 113–115] that we are aware of, i.e., each such

approach involves a centralized design phase. Our approach also requires the nodes

to know an upper-bound on the parameter δ in Eq. (4.3) while designing their ob-

server gains. If, however, we constrain the inter-communication intervals to grow

sub-linearly at worst, i.e, if δ = 0, then such gains can be designed with no knowledge

on the nature of the graph-sequences. Thus, there exists a trade-off between the gen-

erality of the graph sequences that can be tolerated, and the information required to

do so.

Remark 4.5.5 When strong-connectivity is preserved over uniformly bounded inter-

vals, i.e., when f(tq) ≤ T,∀tq ∈ I, for some T ∈ N+, then our approach leads to

bounded estimation errors under bounded disturbances. However, as we will see in

Section 4.5.2, this may no longer be the case if the inter-communication intervals

grow unbounded, no matter how slowly.

4.5.2 Implications of growing inter-communication intervals under bounded

disturbances

While Theorem 4.5.1 shows that estimation is possible even under growing inter-

communication intervals, the goal of this section is to demonstrate via a simple ex-

ample that this may no longer be true in the presence of disturbances. To this end,

consider a scalar, unstable LTI system x[k + 1] = ax[k] + d, where a > 1, and d > 0

is a disturbance input to the system. The network comprises of just 2 nodes: node

1 with measurement model y1[k] = c1x[k], c1 6= 0, and node 2 with no measurements.

Now consider an increasing sequence of time-steps I = {t0, t1, . . .} with t0 = 0, and

let f(tq) = tq+1 − tq,∀tq ∈ I be a non-decreasing function of its argument, as in
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Section 4.2. Suppose the communication pattern comprises of an edge from node

1 to node 2 precisely at the time-steps given by I. Node 1 maintains a standard

Luenberger observer given by x̂1[k + 1] = ax̂1[k] + l1(y1[k] − c1x̂1[k]), where l1 is

the observer gain. Node 2 applies Algorithm 2, which, in this case, translates to

node 2 adopting the estimate of node 1 at each time-step tq, and running open-loop

at all other time-steps. Accordingly, we have x̂2[tq+1] = af(tq)x̂1[tq],∀tq ∈ I. With

ei[k] = x[k]− x̂i[k], i ∈ {1, 2}, one can then easily verify:

e1[k + 1] = γe1[k] + d,∀k ∈ N,

e2[tq+1] = af(tq)e1[tq] + d
(af(tq) − 1)

(a− 1)
,∀tq ∈ I,

(4.14)

where γ = (a−l1c1). Now consider a scenario where the inter-communication intervals

grow unbounded, i.e., f(tq)→∞ as tq →∞. Since a > 1 and d > 0, it is clear from

(4.14) that the error subsequence e2[tq], tq ∈ I will grow unbounded even if node 1

chooses l1 such that γ = 0. For the specific example under consideration, although

the above arguments were constructed w.r.t. our algorithm, it seems unlikely that

the final conclusion would change if one were to resort to some other approach.8 The

discussions in Section 4.5 can be thus summarized as follows.

• For a noiseless, disturbance free LTI system of the form (4.1), one can achieve

exponential convergence at any desired rate, and even finite-time convergence

based on Algorithm 2, under remarkably mild assumptions: joint observabil-

ity, and joint strong-connectivity over intervals that can potentially grow un-

bounded.

• For an unstable system, any non-zero persistent disturbance, however small, can

lead to unbounded estimation errors when the inter-communication intervals

grow unbounded, no matter how slowly. Note however from Eq. (4.14) that

our approach leads to bounded estimation errors under bounded disturbances

if the sequence {f(tq)}tq∈I is uniformly bounded above (see Remark 4.5.5).

8Note that we are only considering single-time-scale algorithms where nodes are not allowed to
exchange their measurements. Also, we assume here that the nodes have no knowledge about the
nature of the disturbance d, thereby precluding the use of any disturbance-rejection technique.
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In light of the above points, the reasons for stating our results in full generality, i.e.,

for unbounded communication intervals, are as follows. First, we do so for theoret-

ical interest, since we believe our work is the first to establish that the distributed

state estimation problem can be solved with growing inter-communication intervals.

Second, we essentially get this result for “free”, i.e., accounting for such general sce-

narios incurs no additional steps in terms of the design of Algorithm 2. Finally, we

emphasize that, while no existing approach can even handle the case where strong-

connectivity is preserved over uniformly bounded time intervals (i.e., ∃T ∈ N+ such

that f(tq) ≤ T,∀tq ∈ I), the analysis for this scenario is simply a special case of that

in Section 4.7.1.

4.6 Chapter Summary

We proposed a novel approach to the design of distributed observers for LTI

systems over time-varying networks. We proved that our algorithm guarantees ex-

ponential convergence at any desired rate (including finite-time convergence) under

graph-theoretic conditions that are far milder than those existing. In particular, we

showed that these results hold even when the inter-communication intervals grow

unbounded over time. To achieve our results, we made a connection to the concept

of Age-of-Information (AoI) in the networking literature, and showed how it could

be used to reject stale estimates of the state, thereby leading to strong theoretical

guarantees for our problem.

4.7 Omitted Proofs

4.7.1 Proof of Theorem 4.5.1

The goal of this section is to prove Theorem 4.5.1. Before delving into the technical

details, we first provide an informal discussion of the main ideas underlying the proof

of Theorem 4.5.1. To this end, let us fix a sub-state j ∈ {1, . . . , N}. The starting
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point of our analysis is Lemma 4.7.2 which establishes that for any non-source node

i ∈ V \ {j}, its error in estimation of sub-state j at time-step k can be expressed as

a delayed version of the corresponding error of the source node j, where the delay is

precisely the freshness-index τ
(j)
i [k]. Given this result, we focus on bounding the delay

τ
(j)
i [k] by exploiting the graph connectivity condition (C3). This is achieved in Lemma

4.7.3 where we first establish that τ
(j)
i [k] gets triggered after a finite period of time, and

then show that it can be bounded above by the function g̃(k) = 2(N − 1)g(k), where

g(k) is as defined in Section 4.2. At this point, we appeal to condition (C2) (which caps

the rate of growth of g̃(k)) in designing the observer gain Lj at node j. Specifically,

in the proof of Theorem 4.5.1, we carefully design Lj such that despite a potentially

growing delay, every non-source node i ∈ V \ {j} inherits the same exponential

convergence to the true dynamics z(j)[k] as that achieved by the corresponding source

node j. With these ideas in place, we first prove a simple result that will be helpful

later on; it states that a non-source node for a certain sub-state will always adopt the

information of the corresponding source node, whenever it is in a position to do so.

Lemma 4.7.1 Consider any sub-state j, and suppose that at some time-step k, we

have j ∈ Ni[k], for some i ∈ V \ {j}. Then, based on Algorithm 2, we have:

(i) If τ
(j)
i [k] = ω, then j = argmin

l∈M(j)
i [k]

τ
(j)
l [k].

(ii) If τ
(j)
i [k] 6= ω, then j = argmin

l∈F(j)
i [k]

τ
(j)
l [k].

Proof The result follows from two simple observations that are direct consequences

of the rules of Algorithm 2: (i) τ
(j)
j [k] = 0,∀k ∈ N, and (ii) for any i ∈ V \ {j},

τ
(j)
i [k] ≥ 1 whenever τ

(j)
i [k] 6= ω. In other words, the source node for a given sub-

state has the lowest freshness-index for that sub-state at all time-steps.

Lemma 4.7.2 Suppose all nodes employ Algorithm 2. Consider any sub-state j, and

suppose that at some time-step k, we have τ
(j)
i [k] = m, where i ∈ V\{j}, and m ∈ N+.
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Then, there exist nodes v(τ) ∈ V \{j}, τ ∈ {k−m+1, . . . , k}, such that the following

is true:

ẑ
(j)
i [k] = Am

jj ẑ
(j)
j [k −m] +

(j−1)∑
q=1

(k−1)∑
τ=(k−m)

A
(k−τ−1)
jj Ajqẑ

(q)
v(τ+1)[τ ]. (4.15)

Proof Consider any sub-state j, and suppose that at some time-step k, we have

τ
(j)
i [k] = m, where i ∈ V \ {j}, and m ∈ N+. Given this scenario, we claim that

there exist nodes v(τ) ∈ V \ {j}, τ ∈ {k −m + 1, . . . , k} such that v(τ) adopts the

information of v(τ − 1) at time τ − 1 for sub-state j, ∀τ ∈ {k −m + 1, . . . , k}, with

v(k−m) = j and v(k) = i. As we shall see, establishing this claim readily establishes

(4.15); thus, we first focus on proving the former via induction on m. For the base

case of induction, suppose τ
(j)
i [k] = 1 for some i ∈ V \{j} at some time-step k. Based

on Algorithm 2 and Lemma 4.7.1, note that this is possible if and only if j ∈ Ni[k−1].

In particular, v(k) = i would then adopt the information of v(k−1) = j at time k−1

for sub-state j. This establishes the claim when m = 1. Now fix an integer r ≥ 2,

and suppose the claim is true for all m ∈ {1, . . . , r − 1}. Suppose τ
(j)
i [k] = r for

some i ∈ V \ {j} at some time-step k. From Algorithm 2, observe that this is true

if and only if i adopts the information of some node l ∈ Ni[k − 1] ∪ {i} at time

k − 1 for sub-state j, such that τ
(j)
l [k − 1] = r − 1. Since r − 1 ≥ 1, it must be that

l ∈ V \ {j}; the induction hypothesis thus applies to node l. Using this fact, and

setting v(k− 1) = l completes our inductive proof of the claim. Finally, observe that

for any τ ∈ {k −m+ 1, . . . , k}, whenever v(τ) adopts the information of v(τ − 1) at

τ − 1, the following identity holds based on (4.10) and (4.12):

ẑ
(j)
v(τ)[τ ] = Ajj ẑ

(j)
v(τ−1)[τ − 1] +

(j−1)∑
q=1

Ajqẑ
(q)
v(τ)[τ − 1]. (4.16)

Using the above identity repeatedly for all τ ∈ {k−m+ 1, . . . , k} with v(k−m) = j

and v(k) = i, immediately leads to (4.15). This completes the proof.
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Lemma 4.7.3 Suppose the sequence {G[k]}∞k=0 satisfies condition (C3) in Section

4.2. Then, for each sub-state j, Algorithm 2 guarantees the following.

τ
(j)
i [k] 6= ω,∀k ≥

N−2∑
q=0

f(tq), ∀i ∈ V , and (4.17)

τ
(j)
i [tp(N−1)] ≤

p(N−1)−1∑
q=(p−1)(N−1)

f(tq),∀p ∈ N+,∀i ∈ V . (4.18)

Proof Fix a sub-state j, and notice that both (4.17) and (4.18) hold for the corre-

sponding source node j, since τ
(j)
j [k] = 0,∀k ∈ N. To establish these claims for the

remaining nodes, we begin by making the following simple observation that follows

directly from (4.9) and (4.13), and applies to every node i ∈ V \ {j}:

τ
(j)
i [k + 1] ≤ τ

(j)
i [k] + 1, whenever τ

(j)
i [k] 6= ω. (4.19)

Our immediate goal is to establish (4.18) when p = 1 and, in the process, establish

(4.17). Let C(j)
0 = {j}, and define:

C(j)
1 , {i ∈ V \ C(j)

0 : {
t1−1⋃
τ=t0

Ni[τ ]} ∩ C(j)
0 6= ∅}. (4.20)

In words, C(j)
1 represents the set of non-source nodes (for sub-state j) that have a

direct edge from node j at least once over the interval [t0, t1). Based on condition

(C3), C(j)
1 is non-empty (barring the trivial case when V = {j}). For each i ∈ C(j)

1 , it

must be that j ∈M(j)
i [k̄] for some k̄ ∈ [t0, t1). Thus, based on (4.9) and (4.13), it must

be that τ
(j)
i [k] 6= ω,∀k ≥ t1 = f(t0),∀i ∈ C(j)

1 . In particular, we note based on (4.19)

that τ
(j)
i [t1] ≤ t1, and hence τ

(j)
i [tN−1] ≤ tN−1 =

∑N−2
q=0 f(tq),∀i ∈ C(j)

1 . We can keep

repeating the above argument by recursively defining the sets C(j)
r , 1 ≤ r ≤ (N − 1),

as follows:

C(j)
r , {i ∈ V \

(r−1)⋃
q=0

C(j)
q : {

tr−1⋃
τ=tr−1

Ni[τ ]} ∩ {
(r−1)⋃
q=0

C(j)
q } 6= ∅}. (4.21)
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We proceed via induction on r. Suppose the following is true for all r ∈ {1, . . . ,m−1},

where m ∈ {2, . . . , N − 1}: τ (j)
i [tr] 6= ω and τ

(j)
i [tr] ≤ tr,∀i ∈

r⋃
q=0

C(j)
q . Now suppose

r = m. If V \
(m−1)⋃
q=0

C(j)
q is empty, then we are done establishing (4.17), and (4.18) for

the case when p = 1. Else, based on condition (C3), it must be that C(j)
m is non-empty.

Consider a node i ∈ C(j)
m . Based on the way C(j)

m is defined, note that at some time-

step k̄ ∈ [tm−1, tm), node i has some neighbor v (say) from the set
(m−1)⋃
q=0

C(j)
q . Based

on the induction hypothesis and (4.19), it must be that τ
(j)
v [k̄] 6= ω and τ

(j)
v [k̄] ≤ k̄.

At this point, if τ
(j)
i [k̄] = ω, then since v ∈M(j)

i [k̄], node i would update τ
(j)
i [k̄] based

on (4.9). Else, if τ
(j)
i [k̄] 6= ω, there are two possibilities: (i) v ∈ F (j)

i [k̄], implying

F (j)
i [k̄] 6= ∅; or (ii) v /∈ F (j)

i [k̄], implying τ
(j)
i [k̄] ≤ τ

(j)
v [k̄] ≤ k̄. The above discussion,

coupled with the freshness-index update rules for Case 2 of the algorithm (line 5

of Algo. 2), and (4.19), imply τ
(j)
i [tm] 6= ω and τ

(j)
i [tm] ≤ tm. This completes the

induction step. Appealing to (4.19) once again, and noting that
⋃N−1
q=0 C

(j)
q = V and

tN−1 =
∑N−2

q=0 f(tq), establishes (4.17), and (4.18) when p = 1.

In order to establish (4.18) for any p ∈ N+, one can follow a similar line of

argument as above to analyze the evolution of the freshness indices over the interval

[t(p−1)(N−1), tp(N−1)]. In particular, for any p > 1, we can set D(j)
0 = {j}, and define

the sets D(j)
r , 1 ≤ r ≤ (N − 1) recursively as follows:

D(j)
r , {i ∈ V \

(r−1)⋃
q=0

D(j)
q : {

th(p,N,r)−1⋃
τ=th(p,N,r)−1

Ni[τ ]} ∩ {
(r−1)⋃
q=0

D(j)
q } 6= ∅}, (4.22)

where h(p,N, r) = (p − 1)(N − 1) + r. One can then establish that τ
(j)
i [th(p,N,r)] ≤∑h(p,N,r)−1

q=(p−1)(N−1) f(tq),∀i ∈ D(j)
r , ∀r ∈ {1, . . . , N − 1}, via induction.

We are now in position to prove Theorem 4.5.1.

Proof (Theorem 4.5.1) The proof is divided into two parts. In the first part, we

describe a procedure for designing the observer gains {Li}Ni=1. In the second part,

we establish that our choice of observer gains indeed leads to the desired exponential

convergence rate ρ.
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Design of the observer gains: We begin by noting that for each sub-state j,

one can always find scalars βj, γj ≥ 1, such that
∥∥∥(Ajj)

k
∥∥∥ ≤ βjγ

k
j ,∀k ∈ N [105].9

Define γ , max
1≤j≤N

γj. Next, fix a δ̄ ∈ (δ, 1), where δ is as in (4.3). Given a desired

rate of convergence ρ ∈ (0, 1), we now recursively define two sets of positive scalars,

namely {ρj}Nj=1 and {λj}Nj=1, starting with j = N . With λN = ρ, let ρj, j = N , be

chosen to satisfy:

γ δ̄ρ1−δ̄
j ≤ λj. (4.23)

Having picked ρj ∈ (0, 1) to meet the above condition, we set λj−1 to be any number

in (0, ρj), pick ρj−1 to satisfy (4.23), and then repeat this process till we reach j = 1.

Observe that the sets {ρj}Nj=1 and {λj}Nj=1 as defined above always exist, and satisfy:

ρ1 < λ1 < ρ2 < λ2 < · · · < λN−1 < ρN < λN = ρ. For each sub-state j ∈ {1, . . . , N},

let the corresponding source node j design the observer gain Lj (featuring in equation

(4.8)) in a manner such that the matrix (Ajj − LjCjj) has distinct real eigenvalues

with spectral radius equal to ρj. Such a choice of Lj exists as the pair (Ajj,Cjj) is

observable by construction. This completes our design procedure.

Convergence analysis: We first note that there exists a set of positive scalars

{α1, . . . , αN}, such that [105]:∥∥∥(Ajj − LjCjj)
k
∥∥∥ ≤ αjρ

k
j ,∀k ∈ N. (4.24)

For a particular sub-state j, let e
(j)
i [k] = ẑ

(j)
i [k] − z(j)[k]. Consider the first sub-

state j = 1, and observe that based on (4.4), (4.5), and (4.8), the following is true:

e
(1)
1 [k + 1] = (A11 − L1C11)e

(1)
1 [k]. Thus, we obtain

e
(1)
1 [k] = (A11 − L1C11)ke

(1)
1 [0]. (4.25)

Based on (4.24) and (4.25), we then have:∥∥∥e(1)
1 [k]

∥∥∥ ≤ c1ρ
k
1,∀k ∈ N, (4.26)

where c1 , α1

∥∥∥e(1)
1 [0]

∥∥∥. Given that node 1’s error for sub-state 1 decays exponentially

as per (4.26), we want to now relate the errors e
(1)
i [k], i ∈ V \ {1} of the non-source

9We use ‖A‖ to refer to the induced 2-norm of a matrix A.
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nodes (for sub-state 1) to e
(1)
1 [k]. To this end, consider any i ∈ V \ {1}, and note

that for any k ≥ tN−1, Eq. (4.17) in Lemma 4.7.3 implies that τ
(1)
i [k] 6= ω, and hence

τ
(1)
i [k] ∈ N+. Invoking Lemma 4.7.2, and using the fact that z(1)[k] = (A11)mz(1)[k −

m],∀m ∈ N, we then obtain the following ∀i ∈ V \ {1}:

e
(1)
i [k] = (A11)τ

(1)
i [k]e

(1)
1 [k − τ (1)

i [k]],∀k ≥ tN−1. (4.27)

Our next goal is to bound the delay term τ
(1)
i [k] in the above relation. For this

purpose, consider any time-step k ≥ tN−1, and let p(k) be the largest integer such

that tp(k)(N−1) ≤ k. Then, for any sub-state j, and any i ∈ V \ {j}, we observe:

τ
(j)
i [k]

(a)

≤ τ
(j)
i [tp(k)(N−1)] + (k − tp(k)(N−1))

(b)

≤
p(k)(N−1)−1∑

q=(p(k)−1)(N−1)

f(tq) + (k − tp(k)(N−1))

(c)

≤ 2(N − 1)f(m(k))
(d)
= 2(N − 1)g(k).

(4.28)

In the above inequalities, (a) follows from (4.17) in Lemma 4.7.3 and (4.19); (b)

follows from (4.18) in Lemma 4.7.3; and (c) follows from the monotonicity of f(·)

in condition (C1), and by recalling that m(k) , max{tq ∈ I : tq ≤ k}. Finally, (d)

follows by recalling that g(k) = f(m(k)). Recalling that
∥∥∥(A11)k

∥∥∥ ≤ β1γ
k
1 , using

the bounds in (4.26) and (4.28), the fact that γ1 ≥ 1 and ρ1 < 1, and the sub-

multiplicative property of the 2-norm, we obtain the following by taking norms on

both sides of (4.27):

∥∥∥e(1)
i [k]

∥∥∥ ≤ c̄1

(
γ1

ρ1

)g̃(k)

ρk1,∀k ≥ tN−1,∀i ∈ V \ {1}, (4.29)

where g̃(k) = 2(N − 1)g(k) and c̄1 , c1β1. Based on condition (C3), and our choice

of δ̄, observe that there exists k̄(δ̄) such that g̃(k) ≤ δ̄k,∀k ≥ k̄(δ̄). With k1 ,

max{tN−1, k̄(δ̄)}, we then obtain the following based on (4.23) and (4.29), for all

k ≥ k1 and for all i ∈ V \ {1}:∥∥∥e(1)
i [k]

∥∥∥ ≤ c̄1

(
γ δ̄1ρ

1−δ̄
1

)k
≤ c̄1

(
γ δ̄ρ1−δ̄

1

)k
≤ c̄1λ

k
1. (4.30)
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Note that since c̄1 ≥ c1 and λ1 > ρ1, the above bound applies to node 1 as well (see

equation (4.26)). We have thus established that exponential convergence at rate λ1

for sub-state 1 holds for each node in the network.

Our aim is to now obtain a bound similar to that in (4.30) for each sub-state

j ∈ {2, . . . , N}. To this end, with gjq = ‖(Ajq − LjCjq)‖ and hjq = ‖Ajq‖, let us

define the following quantities recursively for j ∈ {2, . . . , N}:

kj ,
kj−1

(1− δ̄)
,

cj ,
αj

ρ
kj−1

j

∥∥∥e(j)
j [kj−1]

∥∥∥+

(j−1)∑
q=1

gjq c̄q
(ρj − λq)

λkj−1
q

 ,

c̄j , βj

cj +

(j−1)∑
q=1

hjq c̄q
(γj − λq)

 ,

(4.31)

where k1 , max{tN−1, k̄(δ̄)}, c1 , α1

∥∥∥e(1)
1 [0]

∥∥∥, and c̄1 = c1β1. Based on the above

definitions, we claim that for each sub-state j ∈ {1, . . . , N}, the following is true:∥∥∥e(j)
i [k]

∥∥∥ ≤ c̄jλ
k
j ,∀k ≥ kj,∀i ∈ V . (4.32)

We will prove the above claim via induction on the sub-state number j. We have

already established (4.32) for the base case when j = 1. For j ≥ 2, our strategy will

be to first analyze the evolution of e
(j)
j [k] at the source node j. From (4.4) and (4.5),

we note that the dynamics of the j-th sub-state are coupled with those of the first

j− 1 sub-states. Thus, e
(j)
j [k] will exhibit exponential decay only when the errors for

the first j − 1 sub-states have already started decaying exponentially, with kj−1 (as

defined in (4.31)) representing the instant when exponential decay for the (j − 1)-th

sub-state kicks in. Let us now prove that as soon as this happens, the following holds:∥∥∥e(j)
j [k]

∥∥∥ ≤ cjρ
k
j ,∀k ≥ kj−1. (4.33)
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To do so, suppose (4.32) holds for all j ∈ {1, . . . , l − 1}, where l ∈ {2, . . . , N}. Now

let j = l and observe that equations (4.4) and (4.5) yield:

z(l)[k + 1] = Allz
(l)[k] +

(l−1)∑
q=1

Alqz
(q)[k]

= (All − LlCll)z
(l)[k] +

(l−1)∑
q=1

(Alq − LlClq)z
(q)[k] + Llyl[k].

(4.34)

Based on the above equation and (4.8), we obtain:

e
(l)
l [k + 1] = (All − LlCll)e

(l)
l [k] +

(l−1)∑
q=1

(Alq − LlClq)e
(q)
l [k].

Rolling out the above equation starting from kl−1 yields:

e
(l)
l [k] = Fll

(k−kl−1)e
(l)
l [kl−1] +

(l−1)∑
q=1

(k−1)∑
τ=kl−1

Fll
(k−τ−1)Glqe

(q)
l [τ ], (4.35)

where Fll = (All − LlCll), and Glq = (Alq − LlClq). Taking norms on both sides of

the above equation, using the triangle inequality, and the sub-multiplicative property

of the two-norm, we obtain:

∥∥∥e(l)
l [k]

∥∥∥ (a)

≤ αlρ
k
l


∥∥∥e(l)

l [kl−1]
∥∥∥

ρ
kl−1

l

+
1

ρl

(l−1)∑
q=1

glq

(k−1)∑
τ=kl−1

ρ−τl

∥∥∥e(q)
l [τ ]

∥∥∥


(b)

≤ αlρ
k
l


∥∥∥e(l)

l [kl−1]
∥∥∥

ρ
kl−1

l

+
1

ρl

(l−1)∑
q=1

glq c̄q

∞∑
τ=kl−1

(
λq
ρl

)τ
(c)

≤ clρ
k
l , ∀k ≥ kl−1.

(4.36)

In the above inequalities, (a) follows from (4.24) and by recalling that glq = ‖Glq‖; (b)

follows by first applying the induction hypothesis noting that q ≤ (l−1) and τ ≥ kl−1,

and then changing the upper limit of the inner summation (over time); (c) follows by

simplifying the preceding inequality using the fact that λq < ρl,∀q ∈ {1, . . . , l − 1},

and using the definition of cl in (4.31). We have thus obtained a bound on the

estimation error of sub-state l at node l. To obtain a similar bound for each i ∈ V\{l},
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note that equation (4.34) can be rolled out over time to yield the following for each

m ∈ N:

z(l)[k] = Am
ll z

(l)[k −m] +

(l−1)∑
q=1

(k−1)∑
τ=(k−m)

A
(k−τ−1)
ll Alqz

(q)[τ ].

Leveraging Lemma 4.7.2, we can then obtain the following error dynamics for a node

i ∈ V \ {l},∀k ≥ tN−1.

e
(l)
i [k] = (All)

τ
(l)
i [k]e

(l)
l [k − τ (l)

i [k]]

+

(l−1)∑
q=1

(k−1)∑
τ=(k−τ (l)

i [k])

A
(k−τ−1)
ll Alqe

(q)
v(τ+1)[τ ].

(4.37)

Based on the above equation, we note that since All can contain unstable eigen-

values, and since τ
(l)
i [k] may grow over time (owing to potentially growing inter-

communication intervals), we need the decay in e
(l)
l [k−τ (l)

i [k]] to dominate the growth

due to (All)
τ

(l)
i [k] in order for e

(l)
i [k] to eventually remain bounded. To show that this

is indeed the case, we begin by noting the following inequalities that hold when k ≥ kl:

kl−1

k

(a)

≤ 1− δ̄
(b)

≤ 1− g̃(k)

k

(c)

≤ 1− τ
(l)
i [k]

k
, (4.38)

where g̃(k) = 2(N−1)g(k). In the above inequalities, (a) follows directly from (4.31);

(b) follows by noting that k ≥ kl =⇒ k ≥ k̄(δ̄); and (c) follows from (4.28) and by

noting that k ≥ kl =⇒ k ≥ tN−1. We conclude that if k ≥ kl, then k− τ (l)
i [k] ≥ kl−1.

Thus, when k ≥ kl, at any time-step τ ≥ k − τ
(l)
i [k], the errors of the first l − 1

sub-states would exhibit exponential decay based on the induction hypothesis. With
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this in mind, we fix i ∈ V \ {l}, k ≥ kl, and bound e
(l)
i [k] by taking norms on both

sides of (4.37), as follows:

∥∥∥e(l)
i [k]

∥∥∥ (a)

≤ βl

cl(γl
ρl

)g̃(k)

ρkl + γ
(k−1)
l

(l−1)∑
q=1

hlq c̄q

(k−1)∑
τ=(k−τ (l)

i [k])

(
λq
γl

)τ
(b)

≤ βl

cl(γl
ρl

)g̃(k)

ρkl + γ
(k−1)
l

(l−1)∑
q=1

hlq c̄q

∞∑
τ=(k−g̃(k))

(
λq
γl

)τ
(c)
= βl

cl(γl
ρl

)g̃(k)

ρkl +

(l−1)∑
q=1

hlq c̄q
(γl − λq)

(
γl
λq

)g̃(k)

λkq


(d)

≤ c̄l

(
γ δ̄ρ1−δ̄

l

)k (e)

≤ c̄lλ
k
l .

(4.39)

In the above steps, (a) follows by first recalling that
∥∥∥(All)

k
∥∥∥ ≤ βlγ

k
l ,∀k ∈ N, hlq =

‖Alq‖, g̃(k) = 2(N − 1)g(k), and then using the induction hypothesis, equations

(4.28), (4.32), and (4.36), and the facts that ρl < 1, γl ≥ 1; (b) follows by suitably

changing the upper and lower limits of the inner summation (over time), a change

that is warranted since each summand is non-negative; (c) follows by simplifying the

preceding inequality; (d) follows by noting that λq < ρl,∀q ∈ {1, . . . , l− 1}, using the

definition of c̄l in (4.31), and the fact that g̃(k) ≤ δ̄k,∀k ≥ kl; and finally (e) follows

from (4.23). This completes the induction step. Let ei[k] = ẑi[k] − z[k]. Recalling

that λj ≤ ρ, ∀j ∈ {1, . . . , N}, we obtain as desired:

‖ei[k]‖ =

√√√√ N∑
j=1

∥∥∥e(j)
i [k]

∥∥∥2

≤

√√√√ N∑
j=1

c̄2
j

 ρk,∀k ≥ kN ,∀i ∈ V .

4.7.2 Proof of Proposition 4.5.1

Proof (Proposition 4.5.1) For each sub-state j ∈ {1, . . . , N}, let the correspond-

ing source node j design the observer gain Lj (featuring in equation (4.8)) in a manner

such that the matrix (Ajj − LjCjj) has all its eigenvalues at 0. Such a choice of Lj
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exists based on the fact that the pair (Ajj,Cjj) is observable by construction. Let

nj = dim(Ajj). Given the above choice of observer gains, we will prove the result

by providing an upper bound on the number of time-steps it takes the error of each

node to converge to 0. To this end, we first define a sequence {τ̄j}Nj=1 of time-steps

as follows:

τ̄1 = inf{τ ∈ N+, τ ≥ tN−1 : k − g̃(k) ≥ n1,∀k ≥ τ}, (4.40)

where g̃(k) = 2(N − 1)g(k), and

τ̄j = inf{τ ∈ N+ : k − g̃(k) ≥ τ̄j−1 + nj,∀k ≥ τ}. (4.41)

Based on condition (C3), namely lim supk→∞ g(k)/k = δ < 1, observe that τ̄j as

defined above is finite ∀j ∈ {1, . . . , N}. Next, note that by construction, (Ajj−LjCjj)

is a nilpotent matrix of index at most nj. Thus, it is easy to see that e
(1)
1 [k] = 0,∀k ≥

n1, based on (4.25). Recall from (4.28) that for each sub-state j, τ
(j)
i [k] ≤ g̃(k),∀k ≥

tN−1, ∀i ∈ V . From the definition of τ̄1 in (4.40), and equation (4.27), we immediately

obtain that e
(1)
i [k] = 0,∀k ≥ τ̄1,∀i ∈ V . One can easily generalize this argument to

the remaining sub-states by using an inductive reasoning akin to that in the proof of

Theorem 4.5.1. In particular, for any sub-state j ∈ {2, . . . , N}, one can roll out the

error dynamics for node j as in (4.35), starting from time-step τ̄j−1. By this time,

the induction hypothesis would imply that the estimation errors of all nodes on all

sub-states q ∈ {1, . . . , j−1} have converged to zero. The nilpotentcy of (Ajj−LjCjj)

would then imply that e
(j)
j [k] = 0,∀k ≥ τ̄j−1 +nj. From the definition of τ̄j in (4.41),

and (4.28), we note that k ≥ τ̄j =⇒ k − τ (j)
i [k] ≥ τ̄j−1 + nj,∀i ∈ V . Referring to

(4.37), we conclude that e
(j)
i [k] = 0,∀k ≥ τ̄j,∀i ∈ V . Based on the above reasoning,

the overall error for each node converges to 0 in at most τ̄N time-steps.
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Part II

Distributed Hypothesis

Testing and Non-Bayesian

Learning over Networks
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5. A NEW APPROACH TO DISTRIBUTED

HYPOTHESIS TESTING AND NON-BAYESIAN

LEARNING: IMPROVED LEARNING RATE AND

BYZANTINE-RESILIENCE

In this chapter, we study a setting where a group of agents, each receiving partially

informative private signals, seek to collaboratively learn the true underlying state

of the world (from a finite set of hypotheses) that generates their joint observation

profiles. To solve this problem, we propose a distributed learning rule that differs fun-

damentally from existing approaches, in that it does not employ any form of “belief-

averaging”. Instead, agents update their beliefs based on a min-rule. Under standard

assumptions on the observation model and the network structure, we establish that

each agent learns the truth asymptotically almost surely. As our main contribution,

we prove that with probability 1, each false hypothesis is ruled out by every agent

exponentially fast, at a network-independent rate that is strictly larger than existing

rates. We then develop a computationally-efficient variant of our learning rule that

is provably resilient to agents who do not behave as expected (as represented by a

Byzantine adversary model) and deliberately try to spread misinformation.

5.1 Introduction

Given noisy data, the task of making meaningful inferences about a quantity of

interest is at the heart of various complex estimation and detection problems arising in

signal processing, information theory, machine learning, and control systems. When

the information required to solve such problems is dispersed over a network, several

interesting questions arise.
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• How should the individual entities in the network combine their own private

observations with the information received from neighbors to learn the quantity

of interest?

• What are the minimal requirements on the information structure of the entities

and the topology of the network for this to happen?

• How fast does information spread as a function of the diffusion rule and the

structure of the network?

• What can be said when the underlying network changes with time and/or cer-

tain entities deviate from nominal behavior?

In this chapter, we provide rigorous theoretical answers to such questions for the

setting where a group of agents receive a stream of private signals generated by an

unknown quantity known as the “true state of the world”. Communication among

such agents is modeled by a graph. The goal of each agent is to eventually identify

the true state from a finite set of hypotheses. However, while the collective signals

across all agents might facilitate identification of the true state, signals received by

any given agent may, in general, not be rich enough for identifying the state in isola-

tion. Thus, the problem of interest is to develop and analyze local interaction rules

that facilitate inference of the true state at every agent. The setup described above

serves as a common mathematical abstraction for modeling and analyzing various

decision-making problems in social and economic networks (e.g., opinion formation

and spreading), and classification/detection problems arising in large-scale engineered

systems (e.g., object recognition by a group of aerial robots).1 While the former is

typically studied under the moniker of non-Bayesian social learning, the latter usu-

ally goes by the name of distributed detection/hypothesis testing. In what follows,

we discuss relevant literature.

1Although the model of interest to us (see Section 5.2) has been used to study decision-making in
social networks [127–129], we do not claim that the rules developed in this chapter capture human
reasoning in any way.
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5.1.1 Related Work

Much of the earlier work on this topic of interest assumed the existence of a cen-

tralized fusion center for performing computational tasks [130–132]. Our work in

this chapter, however, belongs to a more recent body of literature wherein individual

agents are endowed with computational capabilities, and interactions among them are

captured by a graph [127–129, 133–142]. These works are essentially inspired by the

model in [127], where each agent maintains a belief vector (over the set of hypotheses)

that is sequentially updated as the convex combination of its own Bayesian poste-

rior and the priors of its neighbors. Subsequent approaches share a common theme:

they typically involve a learning rule that combines a local Bayesian update with

a consensus-based opinion pooling of neighboring beliefs. The key point of distinc-

tion among such rules stems from the specific manner in which neighboring opinions

are aggregated. Specifically, linear opinion pooling is studied in [127, 128, 133, 134],

whereas log-linear opinion pooling is studied in [135–142]. Under appropriate condi-

tions on the observation model and the network structure, each of these approaches

enable every agent to learn the true state exponentially fast, with probability 1. The

rate of convergence, however, depends on the specific nature of the learning rule. No-

tably, finite-time concentration results are derived in [137–139], and a large-deviation

analysis is conducted in [140,141] for a broad class of distributions that generate the

agents’ observation profiles. Extensions to different types of time-varying graphs have

also been considered in [133, 136–139]. In a recent paper [129], the authors go be-

yond specific functional forms of belief-update rules and, instead, adopt an axiomatic

framework that identifies the fundamental factors responsible for social learning. We

point out that belief-consensus algorithms on graphs have been studied prior to [127]

as well as in [143,144]. The model in [143,144] differs from that in [127,128,133–142]

in one key aspect: while in the former each agent has access to only one observa-

tion, the latter allows for influx of new information into the network in the form of a

time-series of observations at every agent.
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5.1.2 Summary of Contributions

In light of the above developments, we now elaborate on the main contributions

of this work.

1) A Novel Distributed Learning Rule: In [138, Section III], the authors

explain that the commonly studied linear and log-linear forms of belief aggregation

are specific instances of a more general class of opinion pooling known as g-Quasi-

Linear Opinion pools (g-QLOP), introduced in [145]. Our first contribution is the

development of a novel belief update rule that deviates fundamentally from the broad

family of g-QLOP learning rules. Specifically, the learning algorithm that we propose

does not rely on any linear consensus-based belief aggregation protocol. Instead, each

agent maintains two sets of belief vectors: a local belief vector and an actual belief

vector. Each agent updates its local belief vector in a Bayesian manner based on only

its private observations, i.e., without the influence of neighbors. The actual belief

on each hypothesis is updated (up to normalization) as the minimum of the agent’s

own local belief and the actual beliefs of its neighbors on that particular hypothesis.

We provide theoretical guarantees on the performance of this algorithm in Section

5.4. As we explain later in the chapter, establishing such guarantees requires proof

techniques that differ substantially from those existing.

2) Strict Improvement in Rate of Learning: While data-aggregation via

arithmetic or geometric averaging of neighboring beliefs allows asymptotic learning,

such schemes may potentially dilute the rate at which false hypotheses are eliminated.

In particular, for the linear consensus protocol introduced in [127], the limiting rate

at which a particular false hypothesis is eliminated is almost surely upper-bounded

by a quantity that depends on the relative entropies and centralities of the agents

[128]. The log-linear rules in [137–141] improve upon such a rate: with probability

1, the asymptotic rate of rejection of a false hypothesis under such rules is a convex

combination of the agents’ relative entropies, where the convex weights correspond

to the eigenvector centralities of the agents. In contrast, based on our approach,
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each false hypothesis is rejected by every agent exponentially fast, at a rate that is

almost surely lower-bounded by the best relative entropy (between the true state and

the false hypothesis) among all agents, provided the underlying network is static and

strongly-connected. In Theorem 5.4.1, we show that the above result continues to hold

even when the network changes with time, as long as a mild joint strong-connectivity

condition is met. Thus, to the best of our knowledge, our approach leads to a strict

improvement in the rate of learning over all existing approaches: this constitutes our

main contribution.

3) Resilience to Adversaries: Despite the wealth of literature on distributed

inference, there is limited understanding of the impact of misbehaving agents who

do not follow the prescribed learning algorithm. Such agents may represent stub-

born individuals or ideological extremists in the context of a social network, or model

faults (either benign or malicious) in a networked control system. In the presence

of such misbehaving entities, how should the remaining agents process their private

observations and the beliefs of their neighbors to eventually learn the truth? To an-

swer this question, we capture deviant behavior via the classical Byzantine adversary

model [62], and develop a provably correct, resilient version of our proposed learning

rule in Section 5.5. Theorem 5.5.1 characterizes the performance of this rule and,

in particular, reveals that each regular agent can infer the truth exponentially fast.

Furthermore, we identify conditions on the observation model and the network struc-

ture that guarantee applicability of our Byzantine-resilient learning rule, and argue

that such conditions can be checked in polynomial time. The only related work that

we are aware of in this regard is [142]. As we discuss in detail in Section 5.5, our

proposed approach has various computational advantages relative to those in [142].

In addition to the main contributions discussed above, a minor contribution of this

paper is the following. For static graphs where all agents behave normally, Corollary

5.4.3 establishes consistency of our learning rule under conditions that are necessary

for any belief update rule to work, when agents make conditionally independent ob-

servations. In particular, we show that the typical assumption of strong-connectivity
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on the network can be relaxed, and identify the minimal requirement for uniquely

learning any state that gets realized.2 Despite its various advantages, our approach

cannot, in general, handle the scenario where there does not exist any single true

state that generates signals consistent with those seen by every agent. The method

in [138, 139], however, is applicable to this case as well, and enables each agent to

identify the hypothesis that best explains the groups’ observations.

A preliminary version of the results in this chapter were published as [146]; these

results were subsequently expanded upon in the pre-print [147].

5.2 Model and Problem Formulation

Network Model: We consider a group of agents V = {1, 2, . . . , n} interacting

over a time-varying, directed communication graph G[t] = (V , E [t]), where t ∈ N. An

edge (i, j) ∈ E [t] indicates that agent i can directly transmit information to agent j

at time-step t. If (i, j) ∈ E [t], then at time t, agent i will be called a neighbor of

agent j, and agent j will be called an out-neighbor of agent i. The set Ni[t] will be

used to denote the neighbors of agent i (excluding itself) at time t, whereas the set

Ni[t] ∪ {i} will be referred to as the inclusive neighborhood of agent i at time t. We

will use |C| to denote the cardinality of a set C.

Observation Model: Let Θ = {θ1, θ2, . . . , θm} denote m possible states of the

world; each θi ∈ Θ will be called a hypothesis. At each time-step t ∈ N+, every

agent i ∈ V privately observes a signal si,t ∈ Si, where Si denotes the signal space

of agent i. The joint observation profile so generated across the network is denoted

st = (s1,t, s2,t, . . . , sn,t), where st ∈ S, and S = S1 × S2 × . . .Sn. The signal st is

generated based on a conditional likelihood function l(·|θ?), governed by the true

state of the world θ? ∈ Θ. Let li(·|θ?), i ∈ V denote the i-th marginal of l(·|θ?). The

2A strongly-connected graph has a path between every pair of nodes.
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signal structure of each agent i ∈ V is then characterized by a family of parameterized

marginals {li(wi|θ) : θ ∈ Θ, wi ∈ Si}.3

We make the following standard assumptions [127–129,133,134,136–142]: (i) The

signal space of each agent i, namely Si, is finite. (ii) Each agent i has knowledge of its

local likelihood functions {li(·|θp)}mp=1, and it holds that li(wi|θ) > 0,∀wi ∈ Si, and

∀θ ∈ Θ. (iii) The observation sequence of each agent is described by an i.i.d. random

process over time; however, at any given time-step, the observations of different agents

may potentially be correlated. (iv) There exists a fixed true state of the world θ? ∈ Θ

(unknown to the agents) that generates the observations of all the agents. Finally,

we define a probability triple (Ω,F ,Pθ?), where Ω , {ω : ω = (s1, s2, . . .), st ∈

S, t ∈ N+}, F is the σ-algebra generated by the observation profiles, and Pθ? is the

probability measure induced by sample paths in Ω. Specifically, Pθ? =
∞∏
t=1

l(·|θ?). For

the sake of brevity, we will say that an event occurs almost surely to mean that it

occurs almost surely w.r.t. the probability measure Pθ? .

Remark 5.2.1 We point out that the existence of a true state that generates the

private signals of all agents is a critical assumption for our approach to work; the

method in [138] does not require this assumption. Moreover, unlike [135, 148], our

rules do not apply to continuous parameter spaces.

Note that assumptions (i) and (ii) on the observation model imply the existence

of a constant L ∈ (0,∞) such that:

max
i∈V

max
wi∈Si

max
θp,θq∈Θ

∣∣∣∣log
li(wi|θp)
li(wi|θq)

∣∣∣∣ ≤ L. (5.1)

We will make use of the above fact later in our analysis.

Given the above setup, the goal of each agent in the network is to discern the true

state of the world θ?. The challenge associated with such a task stems from the fact

that the private signal structure of any given agent is in general only partially infor-

mative. To make this notion precise, define Θθ?

i , {θ ∈ Θ : li(wi|θ) = li(wi|θ?),∀wi ∈
3Whereas wi ∈ Si will be used to refer to a generic element of the signal space of agent i, si,t will
denote the random variable (with distribution li(·|θ?)) that corresponds to the observation of agent
i at time-step t.
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Si}. In words, Θθ?

i represents the set of hypotheses that are observationally equiva-

lent to the true state θ? from the perspective of agent i. In general, for any agent

i ∈ V , we may have |Θθ?

i | > 1, necessitating collaboration among agents subject to

the restrictions imposed by the time-varying communication topology.

Our objective in this chapter will be to design a distributed learning rule that

allows each agent i ∈ V to identify the true state of the world asymptotically almost

surely. To this end, we now introduce the following notion of source agents that will

be useful in our subsequent developments.

Definition 5.2.1 (Source agents) An agent i is said to be a source agent for a

pair of distinct hypotheses θp, θq ∈ Θ, if Ki(θp, θq) > 0, where Ki(θp, θq) represents

the KL-divergence between the distributions li(·|θp) and li(·|θq), and is given by:4

Ki(θp, θq) =
∑
wi∈Si

li(wi|θp) log
li(wi|θp)
li(wi|θq)

. (5.2)

The set of all source agents for the pair θp, θq is denoted by S(θp, θq).

In words, a source agent for a pair θp, θq ∈ Θ is an agent that can distinguish

between the pair of hypotheses θp, θq based on its private signal structure. It should

be noted that S(θp, θq) = S(θq, θp), since Ki(θp, θq) > 0 ⇐⇒ Ki(θq, θp) > 0 [149]. In

this work, we will assume that each state θ ∈ Θ is globally identifiable w.r.t. the joint

observation model of the entire network. Based on our terminology of source agents,

this translates to the following.

Assumption 5.2.2 (Global Identifiability) For each pair θp, θq ∈ Θ such that

θp 6= θq, the set S(θp, θq) of agents that can distinguish between the pair θp, θq is

non-empty.

The above assumption is standard in the related literature. To illustrate the

concepts described above, let us consider the following simple example.

4Although the standard notation for the KL-divergence between li(·|θp) and li(·|θq) is
D(li(·|θp)||li(·|θq)), we use Ki(θp, θq) as a shorthand for the same to avoid cluttering the exposi-
tion.
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Fig. 5.1. Likelihood models for the two agents in Example 1. The model
on the left is that of agent 1, while that on the right is of agent 2.

Example 1 Consider a network of two agents with likelihood models as described in

Fig. 5.1. At every time-step, each agent either observes heads H, or tails T . Thus,

the common signal space for both agents is S1 = S2 = {H,T}. From Fig. 5.1, note

that at each time-step, the probability of agent 1 observing H is 0.5 if either θ1 or θ3

gets realized, and 0.25 if θ2 gets realized. Observe immediately that Θθ1
1 = {θ1, θ3} and

Θθ2
1 = {θ2}, i.e., agent 1 cannot distinguish between the states θ1 and θ3; however, it

can tell θ2 apart from either of the other two states. Agent 2’s likelihood model can

be interpreted similarly. Based on our terminology, we then have the following sets

of source agents: S(θ1, θ2) = 1, S(θ2, θ3) = {1, 2}, and S(θ3, θ1) = 2, implying global

identifiability as per Assumption 5.2.2.

In addition to Assumption 5.2.2, we will make a mild assumption on the time-

varying communication topology. To this end, let the union graph over an interval

[t1, t2], 0 ≤ t1 < t2, indicate a graph with vertex set V , and edge set
⋃t2
τ=t1
E [τ ]. Based

on this convention, we will assume (unless stated otherwise) that the sequence of

communication graphs {G[t]}∞t=0 is jointly strongly-connected, in the following sense.

Assumption 5.2.3 (Joint Strong-Connectivity) There exists T ∈ N+ such that

the union graph over every interval of the form [rT, (r + 1)T ) is strongly-connected,

where r ∈ N.

While the above assumption on the network connectivity pattern is not necessary

for solving the problem at hand, it is fairly standard in the analysis of distributed
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algorithms over time-varying networks [119, 120, 138]. Having introduced the model

and the problem formulation, we now proceed to a formal description of our learning

algorithm.

5.3 Proposed Learning Rule

In this section, we propose a novel belief update rule (Algorithm 3) and discuss

the intuition behind it. Every agent i maintains and updates (at every time-step t)

two separate sets of belief vectors, namely, πi,t and µi,t. Each of these vectors are

probability distributions over the hypothesis set Θ. We will refer to πi,t and µi,t as

the “local” belief vector (for reasons that will soon become obvious), and the “actual”

belief vector, respectively, maintained by agent i. The goal of each agent i ∈ V in the

network will be to use its own private signals and the information available from its

neighbors to update µi,t sequentially, so that limt→∞ µi,t(θ
∗) = 1 almost surely. To do

so, at each time-step t+1 (where t ∈ N), agent i does the following for each θ ∈ Θ. It

first generates πi,t+1(θ) via a local Bayesian update rule that incorporates the private

observation si,t+1 using πi,t(θ) as a prior (line 5 in Algo. 3). Having generated πi,t+1(θ),

agent i updates µi,t+1(θ) (up to normalization) by setting it to be the minimum of its

locally generated belief πi,t+1(θ), and the actual beliefs µj,t(θ), j ∈ Ni[t] ∪ {i} of its

inclusive neighborhood at the previous time-step (line 6 in Algo. 3). It then reports

µi,t+1 to each of its out-neighbors at time t+ 1.5

Intuition behind the learning rule: At the core of our learning algorithm are

two key principles: (1) Preservation of the intrinsic discriminatory capabilities of the

agents, and (2) Propagation of low beliefs on each false hypothesis. We now elaborate

on these features.

Consider the set of source agents S(θ∗, θ) that can differentiate between a certain

false hypothesis θ and the true state θ?. By definition, the signal structures of such

agents are rich enough for them to be able to eliminate θ on their own, i.e., without

5Note that based on our algorithm, agents only exchange their actual beliefs, and not their local
beliefs.
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Algorithm 3 Belief update rule for each i ∈ V
1: Initialization: µi,0(θ) > 0, πi,0(θ) > 0, ∀θ ∈ Θ, and

∑
θ∈Θ µi,0(θ) = 1,∑

θ∈Θ πi,0(θ) = 1

2: Transmit µi,0 to out-neighbors at time 0

3: for t+ 1 ∈ N+ do

4: for θ ∈ Θ do

5: Update local belief on θ as

πi,t+1(θ) =
li(si,t+1|θ)πi,t(θ)

m∑
p=1

li(si,t+1|θp)πi,t(θp)
(5.3)

6: Update actual belief on θ as

µi,t+1(θ) =
min{{µj,t(θ)}j∈Ni[t]∪{i}, πi,t+1(θ)}

m∑
p=1

min{{µj,t(θp)}j∈Ni[t]∪{i}, πi,t+1(θp)}
(5.4)

7: end for

8: Transmit µi,t+1 to out-neighbors at time t+ 1

9: end for

the support of their neighbors. To achieve this, we require each agent to maintain

a local belief vector that is updated (via (5.3)) without any network influence using

only the agent’s own private signals. Doing so ensures that πi,t(θ) → 0 a.s. for each

i ∈ S(θ?, θ). Next, leveraging this property, we want to be able to propagate low

beliefs on θ from S(θ?, θ) to V \ S(θ?, θ), i.e., the agents in S(θ∗, θ) should contribute

towards driving the actual beliefs of their out-neighbors (and eventually, of all the

agents in the set V \ S(θ?, θ)) on the hypothesis θ to zero. Using a min-rule of

the form (5.4), with πi,t+1(θ) featuring as an external network-independent input,

facilitates such propagation without compromising the abilities of agents in S(θ?, θ)

to eliminate θ. When set in motion, our learning rule triggers a process of belief

reduction on θ originating at S(θ?, θ) that eventually propagates to each agent in the

network reachable from S(θ?, θ).



152

Remark 5.3.1 We emphasize that the proposed learning rule given by Algorithm 3

does not employ any form of “belief-averaging”. This feature is in stark contrast with

existing approaches to distributed hypothesis testing that rely either on linear opinion

pooling [127,128,133,134], or log-linear opinion pooling [135–142]. As such, the lack

of linearity in our belief update rule precludes (direct or indirect) adaptation of existing

analysis techniques to suit our needs.

5.4 Analysis of Algorithm 3

5.4.1 Statement of the Results

In this section, we characterize the performance of Algorithm 3. We start with one

of the main results of the paper, proven in Section 5.8.1. Before stating the result, we

remind the reader that for an agent i, Ki(θp, θq) represents the KL-divergence between

the distributions li(·|θp) and li(·|θq), and captures agent i’s ability to distinguish

between the states θp and θq.

Theorem 5.4.1 Suppose the observation model satisfies the global identifiability con-

dition (Assumption 5.2.2), and the sequence of communication graphs {G[t]}∞t=0 is

jointly strongly-connected (Assumption 5.2.3). Then, Algorithm 3 provides the fol-

lowing guarantees.

• (Consistency): For each agent i ∈ V, µi,t(θ
?)→ 1 a.s.

• (Asymptotic Rate of Rejection of False Hypotheses): Consider any

false hypothesis θ ∈ Θ \ {θ?}. Then, the following holds for each agent i ∈ V:

lim inf
t→∞

− log µi,t(θ)

t
≥ max

v∈S(θ?,θ)
Kv(θ

?, θ) a.s. (5.5)

The above result tells us that with probability 1, every agent i will be able to

rule out each false hypothesis θ exponentially fast, at a rate that is eventually lower-

bounded by the best KL-divergence across the network between the pair of hypotheses
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θ? and θ. In particular, this implies that given any ε > 0, the probability that agent i’s

instantaneous rate of rejection of θ, namely − log µi,t(θ)/t, is lower than the quantity

maxv∈S(θ?,θ) Kv(θ
?, θ) by an additive factor of ε, decays to zero. The next result,

proven in Section 5.8.2, sheds some light on the rate of decay of this probability.

Theorem 5.4.2 Suppose the conditions in Theorem 5.4.1 hold. Fix θ ∈ Θ \ {θ?},

and let K̄(θ?, θ) = maxv∈S(θ?,θ) Kv(θ
?, θ). Then for every ε > 0 and δ ∈ (0, 1), there

exists a set Ω′(δ) ⊆ Ω with Pθ?(Ω′(δ)) ≥ 1− δ, such that the following holds for each

agent i ∈ V:

lim inf
t→∞

−1

t
logPθ?

({
− log µi,t(θ)

t
≤ K̄(θ?, θ)− ε

}
∩ Ω′(δ)

)
≥ ε2

8L2
. (5.6)

Our next result pertains to the special case when the communication graph does

not change over time, i.e., when G[t] = G,∀t ∈ N. To state the result, we will employ

the following terminology. Given two disjoint sets C1, C2 ⊆ V , we say C2 is reachable

from C1 if for every i ∈ C2, there exists a directed path in G from some j ∈ C1 to

agent i (note that j will in general be a function of i).

Corollary 5.4.3 Let the communication graph be time-invariant and be denoted by

G. Suppose the following conditions hold. (i) The observation model satisfies the

global identifiability condition (Assumption 5.2.2). (ii) For every pair of hypotheses

θp 6= θq ∈ Θ, the set V \ S(θp, θq) is reachable from the set S(θp, θq) in G. Then,

Algorithm 3 guarantees consistency as in Theorem 5.4.1. Furthermore, for every

θ ∈ Θ \ {θ?}, the following holds for each agent i ∈ V:

lim inf
t→∞

− log µi,t(θ)

t
≥ max

v∈Si(θ?,θ)
Kv(θ

?, θ) a.s., (5.7)

where Si(θ?, θ) ⊆ S(θ?, θ) are those source agents from which there exists a directed

path to i in G.

Proof Fix θ ∈ Θ\{θ?}, and consider an agent i ∈ V \S(θ?, θ). The sets S(θ?, θ) and

Si(θ?, θ) are non-empty based on conditions (i) and (ii) of the theorem, respectively.
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Following a similar line of argument as in the proof of Theorem 5.4.1, one can establish

the following for each v ∈ Si(θ?, θ).

lim inf
t→∞

− log µi,t(θ)

t
≥ Kv(θ

?, θ) a.s. (5.8)

The assertion regarding equation (5.7) then follows readily. Consistency follows by

noting that since Si(θ?, θ) ⊆ S(θ?, θ), Kv(θ
?, θ) > 0, ∀v ∈ Si(θ?, θ).

Our next result reveals that the combination of conditions (i) and (ii) in Corollary

5.4.3 constitutes minimal requirements on the observation model and the network

structure for any learning algorithm to guarantee consistency, when the observations

of the agents are conditionally independent.

Theorem 5.4.4 Let the communication graph be time-invariant and be denoted by

G. Then, the following assertions hold.

(i) Conditions (i) and (ii) in Corollary 5.4.3, taken together, is equivalent to global

identifiability of each source component of G.6

(ii) Suppose the observations of the agents are independent conditional on the real-

ization of any state, i.e., l(·|θ) =
n∏
i=1

li(·|θ),∀θ ∈ Θ. Then, global identifiability

of each source component of G is necessary and sufficient for unique identifica-

tion of any true state that gets realized, at every agent, with probability 1.

The proof of the above result is fairly straightforward and hence omitted here.

We now leverage the above results to quantify the rate at which the overall network

uncertainty about the true state decays to zero. To measure such uncertainty, we

employ the following metric from [128] which captures the total variation distance

between the agents’ beliefs at time-step t, and the probability distribution that is

concentrated entirely on the true state of the world, namely 1θ?(·):

et(θ
?) ,

1

2

n∑
i=1

‖µi,t(·)− 1θ?(·)‖1
=

n∑
i=1

∑
θ 6=θ?

µi,t(θ). (5.9)

6A source component of a time-invariant graph G is a strongly connected component with no incom-
ing edges.
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Given that θ? gets realized, the rate of social learning is then defined as [128,140]:

ρL(θ?) , lim inf
t→∞

−1

t
log et(θ

?). (5.10)

Notice that the above expression depends on the state being realized; to account

for the realization of any state, one can simply look at the quantity minθ?∈Θ ρL(θ?)

that provides a sense for the least rate of learning one can expect given a certain

observation model, a network, and a consistent learning algorithm. We have the

following simple results; their proofs are trivial and hence omitted.

Corollary 5.4.5 Suppose the conditions stated in Theorem 5.4.1 are met. Then,

Algorithm 3 guarantees:

ρL(θ?) ≥ min
θ 6=θ?

max
v∈S(θ?,θ)

Kv(θ
?, θ) a.s. (5.11)

Corollary 5.4.6 Suppose the conditions stated in Corollary 5.4.3 are met. Then,

Algorithm 3 guarantees:

ρL(θ?) ≥ min
θ 6=θ?

min
i∈V

max
v∈Si(θ?,θ)

Kv(θ
?, θ) a.s. (5.12)

5.4.2 Discussion of the Results

Comments on Theorem 5.4.1: Let us compare the rate of learning based on our

method to those existing in literature. Under identical assumptions of global identifi-

ability of the observation model, and strong-connectivity (or joint strong-connectivity

as in [138]) of the underlying communication graph, both linear [127, 128] and log-

linear [137, 138, 140] opinion pooling lead to an asymptotic rate of rejection of the

form
∑

i∈V νiKi(θ
?, θ) for each false hypothesis θ ∈ Θ \ {θ?}, for each agent i ∈ V .7

7In [138], the consensus weights are chosen to obtain a network-structure independent (albeit
network-size dependent) rate of rejection of θ of the form 1/n

∑
i∈V Ki(θ

?, θ). The same rate is
obtained with static, undirected networks when the consensus weight matrix is symmetric, since the
eigenvector centralities are simply 1/n in such a case.
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Here, νi represents the eigenvector centrality of agent i ∈ V , which is strictly positive

for a strongly-connected graph. Thus, referring to equation (5.5) reveals that the

asymptotic rate of rejection of each false hypothesis (and hence, the rate of social

learning) resulting from our algorithm (see (5.11)), is a strict improvement over all

existing rates - this constitutes a significant contribution of our work. Furthermore,

observe from Corollary 5.4.5 that the lower bound on the rate of social learning is

independent of both the size and structure of the network. A key implication of this

result is the fact that as long as the total information content of the network remains

the same, the specific manner in which signals are allocated to agents does not im-

pact the long-run learning rate of our approach. In sharp contrast, existing learning

rates that depend on the agents’ eigenvector centralities may suffer under poor signal

allocations; see [128] for a discussion on this topic.

It should, however, be noted that the network independence aspect of our ap-

proach concerns asymptotic learning rates. The dependence on the network structure

(presumably, on the diameter) is bound to manifest itself in the transients generated

by our rule. Given the non-linear structure of our update rule (5.4), characterizing

such a dependence is quite non-trivial.

Comments on Theorem 5.4.2: At any given time t, for some i ∈ V and θ 6= θ?,

let us consider the set of all sample paths where agent i’s instantaneous rate of

rejection of θ is lower than its asymptotic lower bound by a constant additive factor

of ε. Theorem 5.4.2 complements Theorem 5.4.1 by telling us that an arbitrarily

accurate approximation of the measure of such “bad” sample paths eventually decays

to zero at an exponential rate no smaller than ε2/8L2 (the approximation is arbitrarily

accurate since the set Ω′(δ) can be chosen to have measure arbitrarily close to 1). It is

instructive to compare the concentration result of Theorem 5.4.2 with [138, Theorem

2], [140, Theorem 2], and [137, Lemma 3]. The analogous results in these papers are

more elegant relative to ours, since they do not involve a set of the form Ω′(δ) that

shows up in our analysis. A refinement of Theorem 5.4.2 to obtain a cleaner non-

asymptotic result would require a precise characterization of the transient dynamics
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generated by our learning rule: we reserve investigations along this line as future

work.

Comments on Corollary 5.4.3: While Theorem 5.4.4 identifies an algorithm-

independent necessary condition for ensuring unique identifiability of any realized

state at every agent (when the communication graph is time-invariant and agents

receive conditionally independent signals), Corollary 5.4.3 reveals that such a condi-

tion is also sufficient for our proposed learning algorithm to work. We believe that

a result of this flavor is missing in the existing literature on distributed hypothesis

testing, where strong-connectivity is a standard assumption. The authors in [150]

do relax the strong-connectivity assumption, but require every strongly-connected

component of G to be globally identifiable for learning to take place [150, Proposition

4]. In contrast, Corollary 5.4.3 requires only the source components of G to satisfy

the global identifiability requirement. Interestingly, our conclusions in this context

align with an analogous result that identifies joint detectability of each source com-

ponent as the minimal requirement for solving the related problem of distributed

state estimation [1, 58]. The more general network condition in Corollary 5.4.3 (as

opposed to strong-connectivity) comes at the cost of a potential reduction in the

rate of social learning, as reflected in Corollary 5.4.6. When the underlying graph is

strongly-connected, Si(θ?, θ) = S(θ?, θ). Consequently, the min w.r.t. the agent set

V in equation (5.12) goes away, and we recover Corollary 5.4.5.

5.5 Learning despite Misinformation

In this section, we will address the problem of learning the true state of the world

despite the presence of certain agents who do not behave as expected and deliberately

try to spread misinformation. In order to isolate the challenges introduced by such

malicious entities, we will consider a time-invariant communication graph G for our
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subsequent discussion; we anticipate that our proposed approach will extend to the

time-varying case with suitable modifications.8

Adversary Model: As our adversary model, we consider the same worst-case

Byzantine attack model that was discussed in Chapter 3. Recall that Byzantine

agents possess complete knowledge of the observation model, the network model, the

algorithms being used, the information being exchanged, and the true state of the

world. In return for endowing the adversaries with such capabilities, we will consider

an f -local adversarial model, i.e., we assume that there are at most f adversaries in

the neighborhood of any non-adversarial agent, where f ∈ N. As in Chapter 3, the

adversarial set will be denoted by A ⊂ V , and the remaining agents R = V \ A will

be called the regular agents.

Our immediate goals are as follows. (i) Devise an algorithm that enables each

regular agent to asymptotically identify the true state with probability 1, despite

the presence of an f -local Byzantine adversarial set. (ii) Identify conditions on the

observation model and the network structure that guarantee correctness of such an

algorithm. Prior to addressing these goals, we briefly motivate the need for a novel

Byzantine-resilient learning algorithm.

Motivation: A standard way to analyze the impact of adversarial agents while

designing resilient distributed consensus-based protocols (for applications in con-

sensus [87, 88], optimization [89, 90], hypothesis testing [142], and multi-agent ren-

dezvous [95]) is to construct an equivalent matrix representation of the linear update

rule that involves only the regular agents [152]. In particular, this requires expressing

the iterates of a regular agent as a convex combination of the iterates of its regular

neighbors, based on appropriate filtering techniques, and under certain assumptions

on the network structure. While this can indeed be achieved efficiently for scalar con-

sensus problems, for problems requiring consensus on vectors (like the belief vectors

in our setting), such an approach typically requires the computation of sets known

8Different from our setting, the forceful agents in [151] do not behave arbitrarily and, in fact, update
their beliefs (even if infrequently) by interacting with their neighbors; our adversary model makes
no such assumptions.
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as Tverberg partitions. However, there is no known algorithm that can compute an

exact Tverberg partition in polynomial time for a general d-dimensional finite point

set [153]. Consequently, since the filtering approach developed in [142] requires each

regular agent to compute a Tverberg partition at every iteration, the resulting com-

putations are forbiddingly high. The authors in [142] do briefly discuss an alternate

pairwise learning rule that requires agents to perform scalar consensus on relative

confidence levels (instead of beliefs) of one hypothesis over another. Under such a

rule, for each regular agent, its relative confidence on the true state over every false

hypothesis approaches infinity - a condition that is difficult to verify in practice.

Moreover, the pairwise learning rule in [142] requires each agent to maintain and

update at each time-step a vector of dimension O(m2). In contrast, we propose a

simple, light-weight Byzantine-resilient learning rule that avoids the computation of

Tverberg partitions, and requires agents to update two m-dimensional belief vectors.

5.5.1 A Byzantine-Resilient Distributed Learning Rule

In this section, we develop an easy to implement and computationally-efficient

extension of Algorithm 3 that guarantees learning despite the presence of Byzantine

adversaries. We call it the Local-Filtering based Resilient Hypothesis Elimination

(LFRHE) algorithm (Algorithm 4). Like Algorithm 3, the LFRHE algorithm requires

every regular agent i to maintain and update (at every time-step t) a local belief vector

πi,t, and an actual belief vector µi,t. While πi,t is updated as before via (5.3), the

update of µi,t is the key feature of Algorithm 4. To update µi,t+1(θ), agent i ∈ R

first checks whether it has at least 2f + 1 neighbors. If it does, then it rejects the

highest f and the lowest f neighboring beliefs µj,t(θ), j ∈ Ni (line 7 in Algo. 4), and

employs a min-rule as before, but using only the remaining beliefs (line 8 in Algo. 4).

Thus, agent i filters out the most extreme neighboring beliefs on each hypothesis, and

retains only the moderate ones to update its own actual belief. If agent i has strictly
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Algorithm 4 Belief update rule for each i ∈ R
1: Initialization: µi,0(θ) > 0, πi,0(θ) > 0, ∀θ ∈ Θ, and

∑
θ∈Θ µi,0(θ) = 1,∑

θ∈Θ πi,0(θ) = 1

2: Transmit µi,0 to out-neighbors

3: for t+ 1 ∈ N+ do

4: for θ ∈ Θ do

5: Update local belief on θ as per (5.3)

6: if |Ni| ≥ (2f + 1) then

7: Sort µj,t(θ), j ∈ Ni from highest to lowest, and reject the highest f and

the lowest f of such beliefs.

8: Let Mθ
i,t be the set of agents whose beliefs are not rejected in the

previous step. Update µi,t+1(θ) as

µi,t+1(θ) =
min{{µj,t(θ)}j∈Mθ

i,t
, πi,t+1(θ)}

m∑
p=1

min{{µj,t(θp)}j∈Mθp
i,t

, πi,t+1(θp)}
(5.13)

9: else

10: Update µi,t+1(θ) as

µi,t+1(θ) = πi,t+1(θ) (5.14)

11: end if

12: end for

13: Transmit µi,t+1 to out-neighbors

14: end for

fewer than 2f + 1 neighbors, then it decides against using neighboring information

and, instead, updates its actual belief vector to be equal to its local belief vector (line

10 in Algo. 4).

To state our main result concerning the correctness of Algorithm 4, we recall the

following definitions from Chapter 3.
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Definition 5.5.1 (r-reachable set) [88] For a graph G = (V , E), a set C ⊆ V, and

an integer r ∈ N+, C is an r-reachable set if there exists an i ∈ C such that |Ni\C| ≥ r.

Definition 5.5.2 (strongly r-robust graph w.r.t. S(θp, θq)) For r ∈ N+ and

θp, θq ∈ Θ, a graph G = (V , E) is strongly r-robust w.r.t. the set of source agents

S(θp, θq), if for every non-empty subset C ⊆ V \ S(θp, θq), C is r-reachable.

Theorem 5.5.1 Suppose that for every pair of hypotheses θp, θq ∈ Θ, the graph G is

strongly (2f + 1)-robust w.r.t. the source set S(θp, θq). Then, Algorithm 4 guarantees

the following despite the actions of any f -local set of Byzantine adversaries.

• (Consistency): For each agent i ∈ R, µi,t(θ
?)→ 1 a.s.

• (Asymptotic Rate of Rejection of False Hypotheses): Consider any

false hypothesis θ ∈ Θ \ {θ?}. Then, the following holds for each agent i ∈ R.

lim inf
t→∞

− log µi,t(θ)

t
≥ min

v∈S(θ?,θ)∩R
Kv(θ

?, θ) a.s. (5.15)

Proof See Section 5.8.3.

Remark 5.5.2 For any pair θp, θq ∈ Θ, notice that the strong-robustness condition in

Theorem 5.5.1 (together with Def. 3.7.2) requires |S(θp, θq)| ≥ (2f+1), if V\S(θp, θq)

is non-empty. In particular, it blends requirements on the signal structures of the

agents with those on the communication graph. To gain intuition about this condition,

suppose Θ = {θ1, θ2}, and consider an agent i ∈ V \S(θ1, θ2). To enable i to learn the

truth despite potential adversaries in its neighborhood, one requires (i) redundancy

in the signal structures of the agents, and (ii) redundancy in the network structure

to ensure reliable information flow from S(θ1, θ2) to agent i. These requirements are

encapsulated by Theorem 5.5.1. For a fixed source set S(θp, θq), checking whether G

is strongly (2f + 1)-robust w.r.t. S(θp, θq) can be done in polynomial time by drawing

connections to the process of bootstrap percolation on networks [85, Proposition 5].

Since the source sets for each pair θp, θq ∈ Θ can also be computed in polynomial
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time via a simple inspection of the agents’ signal structures, it follows that the strong-

robustness condition in Theorem 5.5.1 can be checked in polynomial time.

Leveraging Theorem 5.5.1, we can characterize the rate of decay of the collective

uncertainty of the regular agents regarding the true state. To do so, we employ the

following modification of the metric (5.9):

eRt (θ?) ,
1

2

∑
i∈R

‖µi,t(·)− 1θ?(·)‖1
=
∑
i∈R

∑
θ 6=θ?

µi,t(θ). (5.16)

Note that this metric only considers the beliefs of the regular agents as the Byzantine

agents can update their beliefs however they wish. With θ? as the true state, we

define the rate of social learning in the presence of Byzantine adversaries as:

ρRL (θ?) , lim inf
t→∞

−1

t
log eRt (θ?). (5.17)

We have the following immediate corollary of Theorem 5.5.1.

Corollary 5.5.3 Suppose the conditions stated in Theorem 5.5.1 are met. Then,

Algorithm 4 guarantees:

ρRL (θ?) ≥ min
θ 6=θ?

min
v∈S(θ?,θ)∩R

Kv(θ
?, θ) a.s. (5.18)

5.6 Simulations

Example 1 (Impact of Network Size on Rate of Convergence): For our first

simulation study, we consider a binary hypothesis testing problem, i.e., Θ = {θ1, θ2},

where the signal space for each agent is identical and comprises of signals w1 and w2.

The (time-invariant) undirected network for this example is depicted in Figure 5.2(a).

The likelihood models of the agents are as follows: l1(w1|θ1) = 0.7, l1(w1|θ2) = 0.5,

and li(w1|θ1) = li(w1|θ2) = 0.5,∀i ∈ V\{1}, i.e., agent 1 is the only informative agent.

In order to compare the performance of Algorithm 3 to the linear and log-linear belief

update rules in [127] and [138], we implement the latter assuming consensus weights

are assigned based on the lazy Metropolis scheme (see [138] for details). Based on
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Fig. 5.2. Figures 5.2(a) and 5.2(b) represent the network models for sim-
ulation examples 1 and 2, respectively.
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Fig. 5.3. Consider the setup of simulation example 1 with n = 5 agents.
Fig. 5.3(a) depicts the evolution of agent 3’s belief on the true state θ2,
and Fig. 5.3(b) depicts the evolution of the instantaneous rate of rejection
of θ1 for agent 3, namely q3,t(θ1) = − log µ3,t(θ1)/t.

this weight assignment, it is easy to verify that the eigenvector centrality of each

agent is 1/n. All agents start out with uniform priors. With θ? = θ2, and n = 5,

Figure 5.3 illustrates the performance of the three algorithms w.r.t. agent 3. In

particular, Figure 5.3(a) reveals that based on our approach, agent 3’s belief on the

true state θ2 converges to 1 faster than the other algorithms. Figure 5.3(b) makes this
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Fig. 5.4. Consider the setup of simulation example 1 with n = 10 agents.
Fig. 5.4 illustrates the dilution in the rates of social learning for the
linear and log-linear rules with an increase in the number of uninformative
agents. Figures 5.4(a) and 5.4(b) are analogous to those in Figure 5.3.

observation precise by plotting the instantaneous rate of rejection of θ1 for agent 3,

namely q3,t(θ1) = − log µ3,t(θ1)/t. Consistent with the respective theoretical findings,

q3,t(θ1) is eventually lower-bounded by K1(θ2, θ1) for our algorithm (see Theorem

5.4.1), approaches K1(θ2, θ1)/n for the log-linear rule in [138], and is eventually upper-

bounded by K1(θ2, θ1)/n for the linear rule in [127]. Similar conclusions hold for the

other agents.

Suppose we now double the number of agents in the network. Agent 1 continues

to remain the only informative agent. Figure 5.4 compares the performances of the

three algorithms for this case. Notably, the convergence rate for our approach re-

mains unaffected, whereas that for the linear and log-linear rules gets diluted. This

observation can be attributed to the fact that while the rate provided by our algo-

rithm is both network-structure and network-size independent for strongly-connected

networks (see Section 5.4.2), the rates of the linear and log-linear rules depend cru-

cially on the eigenvector centralities of the agents, which, in this case, correspond

to 1/n. Thus, the gap between the performance of our algorithm, and that of the
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Fig. 5.5. Consider the setup of simulation example 2, where agent 5 acts
as an adversary. Figures 5.5(a) and 5.5(b) depict the evolution of agent
7’s belief on the true state, when θ? = θ1, and θ? = θ2, respectively.

linear and log-linear update rules (as measured by convergence rates), becomes more

pronounced as the number of uninformative agents increase (i.e., as n increases, but

the total information content of the network remains the same).

Example 2 (Impact of Adversaries): While the previous example highlighted

the benefits of Algorithm 3, we now focus on an example that demonstrates the

resilience of its variant, namely the LFRHE algorithm (Algorithm 4), to the presence

of Byzantine adversaries. To this end, consider the undirected network in Figure

5.2(b). For this example, Θ = {θ1, θ2, θ3}, and Si = {w1, w2},∀i ∈ V . Suppose

the agent likelihood models are given by li(w1|θ1) = 3/4, li(w1|θ2) = li(w1|θ3) =

1/3,∀i ∈ {1, 2, 3}, li(w1|θ1) = li(w1|θ2) = 2/5, li(w1|θ3) = 1/7, ∀i ∈ {4, 5, 6}, and

li(w1|θ1) = li(w1|θ2) = 1/2, li(w1|θ3) = 5/6,∀i ∈ {7, 8, 9}. Suppose f = 1 and

agent 5 is the only adversarial agent. It is easy to see that condition (i) in Theorem

5.5.1 is met. We will compare the performance of Algorithm 4 with the linear rule

in [127], and the log-linear rule in [138]. For implementing the latter, we again assign

consensus weights based on the lazy Metropolis scheme. All agents start out with

uniform priors. The adversary, agent 5, maintains a belief of 0.1 on the true state,
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and 0.45 on each of the false hypotheses, for all t ≥ 20. Figures 5.5(a) and 5.5(b)

illustrate the repercussions of this action on agent 7, when θ? = θ1 and θ? = θ2,

respectively: while the linear and log-linear rules fail to recover from the attack,

Algorithm 4 enables agent 7 to infer the truth. Similar conclusions hold for the other

regular agents.

5.7 Chapter Summary

In this chapter, we proposed and analyzed a novel algorithm for addressing the

problem of distributed hypothesis testing. The key distinguishing feature of our learn-

ing algorithm is that it does not employ any linear consensus-based data aggregation

protocol. Instead, it relies on a “min-rule” to spread beliefs through the network.

Under mild assumptions of global identifiability and joint strong-connectivity, we es-

tablished consistency of our learning rule. In particular, we showed that the rate of

learning resulting from our approach strictly improves upon all existing rates. For

static networks, we established consistency of our algorithm under minimal require-

ments on the observation model and the network structure. Finally, we proposed

a simple and computationally-efficient version of our learning rule that accounts for

worst-case adversarial behavior on the part of certain agents in the network.

5.8 Omitted Proofs

5.8.1 Proof of Theorem 5.4.1

The proof of Theorem 5.4.1 is based on several intermediate results. We start

with the following simple lemma that characterizes the asymptotic behavior of the

local belief sequences generated based on (5.3); we provide a proof (adapted to our

notation) to keep the paper self-contained, and to introduce certain quantities that

will be referenced later in our analysis.
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Lemma 5.8.1 Consider a false hypothesis θ ∈ Θ \ {θ?}, and an agent i ∈ S(θ?, θ).

Suppose πi,0(θp) > 0,∀θp ∈ Θ. Then, the update rule (5.3) ensures that (i) πi,t(θ)→ 0

a.s., (ii) πi,∞(θ?) , limt→∞ πi,t(θ
?) exists a.s. and satisfies πi,∞(θ?) ≥ πi,0(θ?), and

(iii) the following holds:

lim
t→∞

1

t
log

πi,t(θ)

πi,t(θ?)
= −Ki(θ

?, θ) a.s. (5.19)

Proof Consider any agent i ∈ S(θ?, θ), and define:

ρi,t(θ) , log
πi,t(θ)

πi,t(θ?)
, λi,t(θ) , log

li(si,t|θ)
li(si,t|θ?)

. (5.20)

Then, based on (5.3), we obtain the following recursion:

ρi,t+1(θ) = ρi,t(θ) + λi,t+1(θ),∀t ∈ N. (5.21)

Rolling out the above equation over time yields

ρi,t(θ) = ρi,0(θ) +
t∑

k=1

λi,k(θ),∀t ∈ N+. (5.22)

Notice that {λi,t(θ)} is a sequence of i.i.d. random variables with finite means (see

equation (5.1)). In particular, it is easy to verify that each random variable λi,t(θ)

has mean9 given by −Ki(θ
?, θ). Thus, based on the strong law of large numbers, we

have 1
t

t∑
k=1

λi,k(θ)→ −Ki(θ
?, θ) almost surely. Dividing both sides of (5.22) by t, and

taking the limit as t goes to infinity, we then obtain

lim
t→∞

1

t
ρi,t(θ) = −Ki(θ

?, θ) a.s., (5.23)

establishing part (iii) of the lemma. Now note that based on the definition of the set

S(θ?, θ), Ki(θ
?, θ) > 0. It then follows from (5.23) that ρi,t(θ) → −∞ almost surely,

and hence πi,t(θ)→ 0 almost surely. This establishes part (i) of the lemma. For any

θ ∈ Θθ?

i , observe that λi,t(θ) = 0, ∀t ∈ N+. It then follows from (5.21) that for each

9More precisely, the mean here is obtained by using the expectation operator Eθ? [·] associated with
the measure Pθ? .
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θ ∈ Θθ?

i , ρi,t(θ) = ρi,0(θ),∀t ∈ N+. From the above discussion, we conclude that a

limiting belief vector πi,∞ exists almost surely, with non-zero entries corresponding

to each θ ∈ Θθ?

i . Part (ii) of the lemma then follows readily.

While our proposed learning rule is tailored to facilitate propagation of low beliefs

on false hypotheses, it is crucial to also ensure that the beliefs of all agents on the

true state remain bounded away from zero. In particular, consider the following

scenario. During a transient phase, certain agents see private signals that cause them

to temporarily lower their local beliefs on the true state. This effect manifests itself

in the actual beliefs of the agents via the min-rule (5.4). We ask: can such a transient

phenomenon trigger a cascade of progressively lower beliefs on the true state? The

next important result asserts that this will almost surely never be the case.

Lemma 5.8.2 Suppose the conditions stated in Theorem 5.4.1 hold, and Algorithm

3 is employed by each agent. Then, there exists a set Ω̄ ⊆ Ω with the following

properties: (i) Pθ?(Ω̄) = 1, and (ii) for each ω ∈ Ω̄, there exist constants η(ω) ∈ (0, 1)

and t′(ω) ∈ (0,∞) such that on the sample path ω,

πi,t(θ
?) ≥ η(ω), µi,t(θ

?) ≥ η(ω),∀t ≥ t′(ω), ∀i ∈ V . (5.24)

Proof Let Ω̄ ⊆ Ω denote the set of sample paths for which assertions (i)-(iii) in

Lemma 5.8.1 hold for each false hypothesis θ ∈ Θ \ {θ?}. Based on Lemma 5.8.1,

we note that Pθ?(Ω̄) = 1. Consequently, to prove the result, it suffices to establish

the existence of η(ω) ∈ (0, 1), and t′(ω) ∈ (0,∞) for each sample path ω ∈ Ω̄, such

that (5.24) holds. To this end, fix an arbitrary sample path ω ∈ Ω̄. We first argue

that the local beliefs of every agent on the true state θ? are bounded away from 0

on ω. To see this, pick any agent i ∈ V . Suppose there exists some θ ∈ Θ \ {θ?}

for which i ∈ S(θ?, θ). Then, based on our choice of ω, Lemma 5.8.1 implies that

πi,∞(θ?) ≥ πi,0(θ?) > 0, where the last inequality follows from the requirement of

non-zero priors in line 1 of Algo. 3. In particular, given the structure of the update
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rule (5.3), it follows that πi,t(θ
?) > 0 for all time. This is true since if πi,t(θ

?) = 0

at any instant, then the corresponding belief would remain at 0 for all subsequent

time-steps, thereby violating the fact that πi,∞(θ?) ≥ πi,0(θ?) > 0. Now consider

the scenario where there exists no θ ∈ Θ \ {θ?} for which i ∈ S(θ?, θ), i.e., every

hypothesis in Θ is observationally equivalent to θ? from the point of view of agent i.

In this case, it is easy to see that based on (5.3), πi,t = πi,0, ∀t ∈ N+. In particular,

this implies πi,t(θ
?) = πi,0(θ?) > 0,∀t ∈ N+. This establishes our claim that on ω,

πi,t(θ
?) remains bounded away from zero ∀i ∈ V .

To proceed, define γ1 , mini∈V πi,0(θ?) > 0, where the inequality follows from

line 1 in Algo 3. Pick a small number δ > 0 such that δ < γ1, and notice that our

discussion concerning the evolution of the local beliefs readily implies the existence

of a time-step t′(ω), such that for all t ≥ t′(ω), πi,t(θ
?) ≥ γ1 − δ > 0,∀i ∈ V .

With γ2(ω) , mini∈V{µi,t′(ω)(θ
?)}, we claim that γ2(ω) > 0. The claim follows

by noting that given the structure of the update rule (5.4), and the requirement

of non-zero priors in Algo 3, γ2(ω) can equal 0 if and only if some agent in the

network sets its local belief on θ? to 0 at some time-step prior to t′(ω). However,

this possibility is ruled out in view of the previously established fact that on ω,

πi,t(θ
?) > 0,∀t ∈ N,∀i ∈ V . Let η(ω) = min{γ1−δ, γ2(ω)} > 0. In words, η(ω) lower-

bounds the lowest belief (considering both local and actual beliefs) on the true state

θ? held by an agent at time-step t′(ω). It is apparent from the preceding discussion

that πi,t(θ
?) ≥ η(ω),∀t ≥ t′(ω),∀i ∈ V . Thus, to complete the proof, it remains to
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establish that µi,t(θ
?) ≥ η(ω),∀t ≥ t′(ω), ∀i ∈ V . To this end, let us fix an agent i

and observe the following:

µi,t′(ω)+1(θ?)
(a)
=

min{{µj,t′(ω)(θ
?)}j∈Ni[t′(ω)]∪{i}, πi,t′(ω)+1(θ?)}

m∑
p=1

min{{µj,t′(ω)(θp)}j∈Ni[t′(ω)]∪{i}, πi,t′(ω)+1(θp)}

(b)

≥ η(ω)
m∑
p=1

min{{µj,t′(ω)(θp)}j∈Ni[t′(ω)]∪{i}, πi,t′(ω)+1(θp)}

≥ η(ω)
m∑
p=1

πi,t′(ω)+1(θp)

(c)
= η(ω),

(5.25)

where (a) is given by (5.4), (b) follows from the way η(ω) is defined and by noting

that πi,t(θ
?) ≥ η(ω),∀t ≥ t′(ω),∀i ∈ V , and (c) follows by noting that the local belief

vectors generated via (5.3) are valid probability distributions over the hypothesis set

Θ at each time-step, and hence
m∑
p=1

πi,t′(ω)+1(θp) = 1. The above reasoning applies to

every agent in the network, and can be repeated to establish (5.24) via induction.

The next result establishes that the intrinsic discriminatory capabilities of an

agent are preserved under our learning rule.

Lemma 5.8.3 Suppose the conditions stated in Theorem 5.4.1 hold, and Algorithm

3 is employed by each agent. Consider any false hypothesis θ ∈ Θ\{θ?}, and an agent

i ∈ S(θ?, θ). Then,

lim inf
t→∞

− log µi,t(θ)

t
≥ Ki(θ

?, θ) a.s. (5.26)

Proof With Ω̄ defined as in Lemma 5.8.2, recall that Pθ?(Ω̄) = 1, and pick any

ω ∈ Ω̄. Now consider any false hypothesis θ ∈ Θ \ {θ?}, and an agent i ∈ S(θ?, θ).

Fix any ε > 0, and notice that since i ∈ S(θ?, θ), Eq. (5.19) in Lemma 5.8.1 implies

that there exists ti(ω, θ, ε), such that

πi,t(θ) < e−(Ki(θ
?,θ)−ε)t, ∀t ≥ ti(ω, θ, ε). (5.27)
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Furthermore, since ω ∈ Ω̄, Lemma 5.8.2 guarantees the existence of a time-step

t′(ω) ∈ (0,∞), and a constant η(ω) ∈ (0, 1), such that on ω, πi,t(θ
?) ≥ η(ω), µi,t(θ

?) ≥

η(ω),∀t ≥ t′(ω),∀i ∈ V . Let t̄i(ω, θ, ε) = max{t′(ω), ti(ω, θ, ε)}. Let us suppress the

dependence of t̄i(ω, θ, ε) on i, ω, θ and ε for simplicity of notation, and observe the

following inequalities:

µi,t̄+1(θ)
(a)

≤ πi,t̄+1(θ)
m∑
p=1

min{{µj,t̄(θp)}j∈Ni[t̄]∪{i}, πi,t̄+1(θp)}

≤ πi,t̄+1(θ)

min{{µj,t̄(θ?)}j∈Ni[t̄]∪{i}, πi,t̄+1(θ?)}
(b)
<
e−(Ki(θ

?,θ)−ε)(t̄+1)

η(ω)
.

(5.28)

In the above inequalities, (a) follows from (5.4), whereas (b) follows from (5.27) and

by noting that all agents have both their local and actual beliefs lower bounded by

η(ω) beyond time-step t̄. In particular, it is easy to see that the arguments used to

arrive at (5.28) apply to each time-step t ≥ t̄ + 1. Based on (5.28), we then obtain

that ∀t ≥ t̄+ 1:

− log µi,t(θ)

t
> (Ki(θ

?, θ)− ε) +
log η(ω)

t
. (5.29)

Taking the limit inferior on both sides of (5.29), and noting that ε can be made

arbitrarily small, readily leads to (5.26).

For the subsequent discussion, let us fix a particular false hypothesis θ ∈ Θ \

{θ?}, and assume that global identifiability holds. Let vθ ∈ argmaxl∈S(θ?,θ) Kl(θ
?, θ)

represent any agent with the best discriminatory power w.r.t. the false hypothesis θ,

given that θ? gets realized. Based on Lemma 5.8.3, we have

lim inf
t→∞

− log µvθ,t(θ)

t
≥ Kvθ(θ

?, θ) a.s. (5.30)

Our goal is to now establish that each agent i ∈ V \{vθ} inherits the same asymptotic

rate of rejection of θ as that of agent vθ in (5.30). Roughly speaking, we will achieve

this by showing that under the assumption of joint strong-connectivity, the belief of

any agent i ∈ V \ {vθ} on θ is “not too far off” from the belief of agent vθ on θ. In
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what follows, we make this idea precise. First, we require some additional notation:

with each agent i ∈ V , we associate a non-negative scalar ci,t(θ) ∈ [0,∞]. These

parameters evolve based on the following rules.10

(i) cvθ,t(θ) = 0, ∀t ∈ N.

(ii) ci,0(θ) =∞,∀i ∈ V \ {vθ}.

(iii) For each i ∈ V \ {vθ} and t ∈ N, define τi,t(θ) , minj∈Ni[t]∪{i} cj,t(θ), and

ci,t+1(θ) , τi,t(θ) + 1. (5.31)

To explain the purpose of the above rules, we will adhere to the following terminology.

We say that there exists a path of length m ∈ N+ from vθ to i ∈ V \ {vθ} over

[t − m, t − 1], if there exist agents x(t − m + 1), . . . , x(t) ∈ V \ {vθ}, such that

(x(τ − 1), x(τ)) ∈ E [τ − 1], where τ ∈ {t−m+ 1, . . . , t}, x(t−m) = vθ, and x(t) = i.

Note that the agents appearing in the path need not be distinct, and that we have

assumed the presence of self-loops in each graph G[t], t ∈ N. Rules (i)-(iii) have been

designed in a manner such that if ci,t(θ) is finite at any time-step t ∈ N for any agent

i ∈ V \{vθ}, then there exists a path of length ci,t(θ) from vθ to i over [t−ci,t(θ), t−1],

in the sense described above. Analyzing the time-evolution of ci,t(θ) enables us to

then relate the belief µi,t(θ) of agent i to a delayed-version of the belief µvθ,t(θ) of

agent vθ, where the delay is precisely ci,t(θ) (the above statements are formalized and

proven in Lemma 5.8.5). Since agent vθ is the reference agent here, its delay w.r.t.

its own belief on θ is set to 0 for all time, thus explaining rule (i). Initially, all agents

in V \ {vθ} start out with an “infinite-delay ” w.r.t. the belief of agent vθ; this is

captured by rule (ii). Finally, the rationale behind updating ci,t(θ) via rule (iii) is

to formalize the intuition that under the assumption of joint strong-connectivity, the

lengths of paths linking vθ to agents in V \{vθ} (and hence, the corresponding delays)

should eventually remain uniformly bounded; we begin by establishing this fact in

the following lemma.

10Note that the agents do not actually maintain or update the parameters ci,t(θ). Instead, they
have been introduced solely for the purpose of analysis.



173

Lemma 5.8.4 Consider any θ ∈ Θ \ {θ?} and suppose the joint strong-connectivity

assumption (Assumption 5.2.3) holds. Then, the following is true:

ci,t(θ) ≤ 2(n− 1)T,∀i ∈ V , ∀t ≥ (n− 1)T, (5.32)

where T is the constant appearing in Assumption 5.2.3.

Proof Observe that the conclusion in (5.32) is trivially true for agent vθ since

cvθ,t(θ) = 0,∀t ∈ N. To prove the result for agents in the set V \ {vθ}, we begin

by claiming that

ci,(n−1)T (θ) ≤ (n− 1)T,∀i ∈ V . (5.33)

To prove this claim, let L0(θ?, θ) = {vθ}, and define

L1(θ?, θ) , {i ∈ V \ L0(θ?, θ) : {
T−1⋃
τ=0

Ni[τ ]} ∩ L0(θ?, θ) 6= ∅} (5.34)

as the set of agents in V \ {vθ} that have a direct edge from agent vθ at least once

over the interval [0, T ). Assumption 5.2.3 implies that L1(θ?, θ) is non-empty (barring

the trivial case when V = {vθ}). Now pick any agent i ∈ L1(θ?, θ), and notice that

since vθ ∈ Ni[τ ] for some τ ∈ [0, T ), update rule (5.31) implies ci,τ+1(θ) = 1.11 In

particular, based on (5.31),

ci,t+1(θ) ≤ ci,t(θ) + 1. (5.35)

Based on the above discussion, it follows that for each agent i ∈ L1(θ?, θ), ci,T (θ) ≤ T.

The claim in (5.33) follows readily for each agent i ∈ L1(θ?, θ) by appealing to (5.35).

Let us now recursively define the sets Lr(θ?, θ), 1 ≤ r ≤ (n− 1), as

Lr(θ?, θ) , {i ∈ V \
(r−1)⋃
q=0

Lq(θ?, θ) : {
rT−1⋃

τ=(r−1)T

Ni[τ ]} ∩ {
(r−1)⋃
q=0

Lq(θ?, θ)} 6= ∅}. (5.36)

In words, Lr(θ?, θ) are those agents belonging to V \
(r−1)⋃
q=0

Lq(θ?, θ) that each have

at least one neighbor from the set
(r−1)⋃
q=0

Lq(θ?, θ) over the interval [(r − 1)T, rT − 1].

11Notice that based on the update rule (5.31), ci,t(θ) ≥ 1,∀i ∈ V \ {vθ}. Thus,
argminj∈Ni[t]∪{i} cj,t(θ) = vθ whenever vθ ∈ Ni[t], since cvθ,t(θ) = 0,∀t ∈ N.
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We complete the proof of the claim by inducting on r. The base case with r =

1 has already been proven above. Now suppose the following is true: ci,rT (θ) ≤

rT,∀i ∈ Lr(θ?, θ), where r ∈ {1, . . . ,m − 1}, and m ∈ {2, . . . , n − 1}. Let r =

m. If V \
(m−1)⋃
q=0

Lq(θ?, θ) is empty, then we are done. Else, based on Assumption

5.2.3, it must be that Lm(θ?, θ) is non-empty. Pick any agent i ∈ Lm(θ?, θ), and

notice that it has a neighbor j (say) from the set
(m−1)⋃
q=0

Lq(θ?, θ) at some time-step

τ ∈ [(m − 1)T,mT ). The induction hypothesis coupled with (5.35) implies that

cj,τ (θ) ≤ τ , and hence ci,τ+1(θ) ≤ cj,τ (θ) + 1 ≤ τ + 1 based on (5.31). Appealing to

(5.35) then reveals that ci,mT (θ) ≤ mT , thus completing the induction step. Finally,

noting that
(n−1)⋃
q=0

Lq(θ?, θ) = V completes our proof of the claim (5.33). An identical

line of argument as above can be employed to show that ci,2(n−1)T ≤ (n−1)T,∀i ∈ V .

In particular, this can be done by first taking C0(θ?, θ) = {vθ}, and recursively defining

the sets Cr(θ?, θ), 1 ≤ r ≤ (n− 1) as

Cr(θ?, θ) , {i ∈ V \
(r−1)⋃
q=0

Cq(θ?, θ) : {
(n+r−1)T−1⋃
τ=(n+r−2)T

Ni[τ ]} ∩ {
(r−1)⋃
q=0

Cq(θ?, θ)} 6= ∅}. (5.37)

One can then easily prove via induction that ci,(n−1+r)T (θ) ≤ rT,∀i ∈ Cr(θ?, θ), where

1 ≤ r ≤ (n− 1). The rest then follows from (5.35).

We can keep repeating the above argument to establish that ci,m(n−1)T (θ) ≤ (n−

1)T,∀i ∈ V ,∀m ∈ N+. Finally, based on the above bound and (5.35), it follows

that for each agent i ∈ V , ci,t(θ) is upper-bounded by 2(n − 1)T at any time-step

t ∈ (m(n − 1)T, (m + 1)(n − 1)T ), where m ∈ N+. This establishes (5.32) and

completes the proof.

The next lemma relates µi,t(θ), i ∈ V \ {vθ} to µvθ,t(θ) in terms of the parameter

ci,t(θ) and, in turn, provides the final ingredient required to prove Theorem 5.4.1.

Lemma 5.8.5 Consider any θ ∈ Θ \ {θ?}. Suppose the joint strong-connectivity

assumption holds (Assumption 5.2.3), and each agent applies Algorithm 3. Suppose

ci,t(θ) is finite, where i ∈ V \ {vθ}, and t ∈ N. Then, the following are true.
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(i) There exists a path of length ci,t(θ) from vθ to i over [t− ci,t(θ), t− 1].

(ii) Let the path linking vθ to i over [t − ci,t(θ), t − 1] in part (i) be denoted x(t −

ci,t(θ)), x(t− ci,t(θ) + 1), . . . , x(t), where x(t− ci,t(θ)) = vθ and x(t) = i. Then

µi,t(θ) ≤
µvθ,ai,t(θ)(θ)
t∏

τ=ai,t(θ)+1

ηx(τ),τ (θ?)

, (5.38)

where ai,t(θ) = t− ci,t(θ), and

ηi,t(θ
?) , min{{µj,t−1(θ?)}j∈Ni[t−1]∪{i}, πi,t(θ

?)},∀i ∈ V . (5.39)

Proof We prove part (i) by inducting on the value of ci,t(θ). For the base case,

suppose ci,t(θ) = 1 for some agent i ∈ V \ {vθ} at some time-step t. Based on

(5.31), notice that this can happen if and only if vθ ∈ Ni[t− 1]; the claim in part (i)

then follows readily for the base case. Fix an integer m ≥ 2, and suppose that the

assertion of part (i) holds for any agent i ∈ V \{vθ} and at any time-step t, whenever

ci,t(θ) ∈ {1, . . . ,m− 1}. Now suppose that at some time-step t, ci,t(θ) = m for some

agent i ∈ V \ {vθ}. Referring to (5.31), this is true only if cl,t−1(θ) = m− 1 for some

l ∈ Ni[t − 1] ∪ {i}. Since m ≥ 2, we have cl,t−1(θ) ≥ 1, and hence l ∈ V \ {vθ}.

The induction hypothesis thus applies to agent l, implying the existence of a path

of length m − 1 from vθ to l over [(t − 1) − cl,t−1(θ), t − 2], i.e., over [t − m, t − 2].

Appending this path with the edge (l, i) ∈ E [t− 1] immediately leads to the desired

conclusion.

For part (ii), consider the path x(t− ci,t(θ)), x(t− ci,t(θ) + 1), . . . , x(t) from vθ to

i over [t − ci,t(θ), t − 1], where x(t − ci,t(θ)) = vθ and x(t) = i. By definition of this

path, x(τ − 1) ∈ Nx(τ)[τ − 1] ∪ {x(τ)}, for all τ ∈ {ai,t(θ) + 1, . . . , t}. Thus, referring

to (5.4), we obtain

µx(τ),τ (θ) ≤
µx(τ−1),τ−1(θ)

m∑
p=1

min{{µj,τ−1(θp)}j∈Nx(τ)[τ−1]∪{x(τ)}, πx(τ),τ (θp)}

≤
µx(τ−1),τ−1(θ)

ηx(τ),τ (θ?)
.

(5.40)
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Using the above inequality recursively with τ ∈ {ai,t(θ) + 1, . . . , t} immediately leads

to (5.38).

Proof (Theorem 5.4.1): Fix a false hypothesis θ ∈ Θ \ {θ?}. Based on the

assumption of global identifiability, note that the set S(θ?, θ) is non-empty. Recall

that vθ is any agent for which Ki(θ
?, θ), i ∈ S(θ?, θ) is maximum, and note that we

have already established that the assertion of Theorem 5.4.1, namely inequality (5.5),

holds for agent vθ in Lemma 5.8.3. Now consider an agent i ∈ V\{vθ}, and notice that

if t ≥ (n − 1)T , then ci,t(θ) is uniformly bounded based on Lemma 5.8.4. Thus, the

assertions in Lemma 5.8.5 hold for all t ≥ (n− 1)T . Taking the natural log on both

sides of (5.38), dividing throughout by t, and simplifying, we obtain the following for

all t ≥ (n− 1)T :

− log µi,t(θ)

t
≥ −

log µvθ,ai,t(θ)(θ)

t
+

t∑
τ=ai,t(θ)+1

log ηx(τ),τ (θ
?)

t
, (5.41)

where ai,t(θ) = t − ci,t(θ), ηi,t(θ
?) is as defined in (5.39), and x(τ), τ ∈ {ai,t(θ) +

1, . . . , t}, are agents in the path linking vθ to i over [ai,t(θ), t−1]. For the remainder of

the proof, to lighten the notation, let us drop the subscript on vθ, and let a(t) = ai,t(θ).

Based on (5.4), we then have:

µv,a(t)(θ) ≤
πv,a(t)(θ)

ηv,a(t)(θ?)
. (5.42)

A bit of straightforward algebra then yields:

−
log µv,a(t)(θ)

t
≥ − log πv,t(θ)

t
+

log πv,t(θ)

πv,a(t)(θ)

t
+

log ηv,a(t)(θ
?)

t
. (5.43)

Combining (5.41) and (5.43), we obtain for t ≥ (n− 1)T :

− log µi,t(θ)

t
≥ − log πv,t(θ)

t
+ b(t), (5.44)

where b(t) = b1(t) + b2(t) + b3(t),

b1(t) =
t∑

τ=a(t)+1

log ηx(τ),τ (θ
?)

t
, b2(t) =

log πv,t(θ)

πv,a(t)(θ)

t
, (5.45)
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and

b3(t) =
log ηv,a(t)(θ

?)

t
. (5.46)

We now argue that each of the terms b1(t), b2(t) and b3(t) converge to 0 almost surely

as t→∞. To do so, recall that the set Ω̄ ⊆ Ω in Lemma 5.8.2 has measure 1. In what

follows, we prove that b1(t), b2(t) and b3(t) converge to 0 for each sample path ω ∈ Ω̄.

Accordingly, fix ω ∈ Ω̄, and recall η(ω) ∈ (0, 1) and t′(ω) ∈ (0,∞) from Lemma 5.8.2.

Suppose t > t′(ω) + 2T̄ , where T̄ = (n− 1)T . We then claim the following:

πl,τ (θ
?) ≥ η(ω), µl,τ (θ

?) ≥ η(ω),∀l ∈ V ,∀τ ≥ a(t). (5.47)

To see why this is true, notice that based on Lemma 5.8.4, the following holds when

t > t′(ω) + 2T̄ :

a(t) = t− ci,t(θ) ≥ t− 2T̄ > t′(ω). (5.48)

The claim regarding (5.47) then follows readily from equation (5.24) in Lemma 5.8.2.

Based on the above discussion, and referring to (5.39), we immediately note that

when t > t′(ω) + 2T̄ ,

ηl,τ (θ
?) ≥ η(ω),∀l ∈ V ,∀τ ≥ a(t). (5.49)

For establishing the convergence of b1(t), b2(t) and b3(t), suppose t > t′(ω) + 2T̄ .

Regarding b1(t), we then observe:

|b1(t)| =

∣∣∣∣∣∣
t∑

τ=a(t)+1

log ηx(τ),τ (θ
?)

t

∣∣∣∣∣∣
(a)

≤
t∑

τ=a(t)+1

∣∣log ηx(τ),τ (θ
?)
∣∣

t

(b)

≤ (t− a(t))

t
log

1

η(ω)
(c)

≤ 2T̄

t
log

1

η(ω)
,

(5.50)
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where (a) follows from the triangle inequality, (b) follows from (5.49), and (c) follows

from (5.48). From (5.50), we immediately note that b1(t) → 0 along ω. Let us now

turn our attention to b2(t), and take note of the following:

|b2(t)| (a)
=

1

t

∣∣∣∣∣∣log
πv,t(θ

?)

πv,a(t)(θ?)
+

t∑
τ=a(t)+1

log
lv(sv,τ |θ)
lv(sv,τ |θ?)

∣∣∣∣∣∣
(b)

≤ 1

t

∣∣∣∣log
πv,t(θ

?)

πv,a(t)(θ?)

∣∣∣∣+
1

t

t∑
τ=a(t)+1

∣∣∣∣log
lv(sv,τ |θ)
lv(sv,τ |θ?)

∣∣∣∣
(c)

≤ 2

t
log

1

η(ω)
+

(t− a(t))L

t
(d)

≤ 2

t

(
log

1

η(ω)
+ LT̄

)
,

(5.51)

where (a) follows from (5.22) and some simple manipulations, (b) is a consequence

of the triangle inequality, (c) follows from (5.1) and (5.47), and (d) follows from

(5.48). Based on (5.51), we then note that b2(t) → 0 along ω. Finally, the fact that

b3(t) converges to 0 along ω follows immediately by appealing to (5.49). We have

thus established that b(t)→ 0 almost surely. The desired conclusion then follows by

taking the limit inferior on both sides of (5.44), and noting that

lim
t→∞
− log πv,t(θ)

t
= lim

t→∞
−1

t
ρv,t(θ) = Kv(θ

?, θ) a.s., (5.52)

where ρv,t(θ) is as defined in Lemma 5.8.1. The fact that µi,t(θ) → 0 is immediate,

since Kv(θ
?, θ) > 0 based on global identifiability. The above analysis applies iden-

tically to each θ ∈ Θ \ {θ?}. This establishes consistency of our rule, and completes

the proof.

5.8.2 Proof of Theorem 5.4.2

To prove Theorem 5.4.2, we will make use of one of Littlewood’s three principles: every

pointwise convergent sequence of measurable functions is nearly uniformly convergent.

Theorem 5.8.6 (Egoroff’s Theorem) [154, Chapter 18] Let (X,M, µ) be a finite

measure space and {fn} a sequence of measurable functions on X that converge point-

wise a.e. (almost everywhere) on X to a function f that is finite a.e. on X. Then
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for each ε > 0, there is a measurable subset Xε of X for which fn → f uniformly on

Xε, and µ(Xε) ≥ 1− ε.

Proof (Theorem 5.4.2): Consider a θ ∈ Θ \ {θ?}, and recall that Kvθ(θ
?, θ) =

maxl∈S(θ?,θ) Kl(θ
?, θ) = K̄(θ?, θ). We only prove the result for i ∈ V \ {vθ}, since the

argument for agent vθ will be similar. To this end, let us fix an agent i ∈ V \ {vθ}.

We adhere to the notation used in the proof of Lemma 5.8.1, and for simplicity

assume that the initial local belief vectors πi,0, i ∈ V are uniform distributions over

the hypothesis set Θ; our subsequent arguments will continue to hold (with simple

modifications) under the more general assumption on priors in line 1 of Algo 3. We

immediately note that based on the assumption of uniform priors, ρi,0(θ) = 0,∀i ∈

V . Now referring to inequality (5.44) in the proof of Theorem 5.4.1, we obtain the

following for t ≥ (n− 1)T :

Pθ?
(
− log µi,t(θ)

t
≤ K̄(θ?, θ)− ε

2
+ b(t)

)
(a)

≤ Pθ?
(
− log πvθ,t(θ)

t
≤ K̄(θ?, θ)− ε

2

)
(b)

≤ Pθ?
(
−ρvθ,t(θ)

t
≤ K̄(θ?, θ)− ε

2

)
(c)
= Pθ?

(
1

t

t∑
k=1

λvθ,k(θ)− (−Kvθ(θ
?, θ)) ≥ ε

2

)
(d)

≤ exp(− ε2t

8L2
).

(5.53)

In the above steps, (a) follows directly from (5.44), and (b) follows by noting that

based on the definition of ρvθ,t(θ),

log πvθ,t(θ)

t
≤ ρvθ,t(θ)

t
,∀t ∈ N. (5.54)

Step (c) follows directly from (5.22) with ρvθ,0(θ) = 0. Finally, noting that 1
t

t∑
k=1

λvθ,k(θ)→

−Kvθ(θ
?, θ) a.s. (as argued in the proof of Lemma 5.8.1), using the fact that |λvθ,t(θ)| ≤

L,∀t ∈ N+ based on (5.1), and applying Hoeffding’s inequality [155, Theorem 2], leads

to (d). Now recall from the proof of Theorem 5.4.1 that b(t)→ 0 almost surely. Ap-

pealing to Egoroff’s theorem, we then infer that given any arbitrarily small δ ∈ (0, 1),
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there exists a set Ω′(δ) ⊆ Ω of Pθ?-measure at least (1−δ), such that b(t) converges to

0 uniformly on Ω′(δ). Thus, given any ε > 0, there exists a ω-independent constant

t(ε, δ) ∈ (0,∞), such that |b(t)| ≤ ε
2
,∀t ≥ t(ε, δ), along each sample path ω ∈ Ω′(δ).

Setting t′(ε, δ, n, T ) = max{t(ε, δ), (n− 1)T}, and referring to (5.53), we immediately

obtain that ∀t ≥ t′(ε, δ, n, T ),

Pθ?
({
− log µi,t(θ)

t
≤ K̄(θ?, θ)− ε

}
∩ Ω′(δ)

)
≤ Pθ?

({
− log µi,t(θ)

t
≤ K̄(θ?, θ)− ε

2
+ b(t)

}
∩ Ω′(δ)

)
≤ Pθ?

(
− log µi,t(θ)

t
≤ K̄(θ?, θ)− ε

2
+ b(t)

)
≤ exp(− ε2t

8L2
).

(5.55)

Taking the natural log on both sides of the resulting inequality, dividing throughout

by t, simplifying, and then taking the limit inferior on both sides, leads to the desired

result.

5.8.3 Proof of Theorem 5.5.1

Proof Consider an f -local adversarial set A ⊂ V , and let R = V \A. We study two

separate cases.

Case 1: Consider a regular agent i ∈ R such that |Ni| < (2f + 1). Based on the

hypothesis of the theorem, we claim that i ∈ S(θp, θq), for every pair θp, θq ∈ Θ. We

prove this claim via contradiction. To do so, suppose there exists a pair θp, θq ∈ Θ,

such that i ∈ V \ S(θp, θq). As |Ni| < (2f + 1), the set {i} is clearly not (2f + 1)-

reachable (see Def. 3.7.1). Thus, G is not strongly (2f + 1)-robust w.r.t. the source

set S(θp, θq), a fact that contradicts the hypothesis of the theorem. Thus, we have

established that if the graph-theoretic condition identified in the theorem is met, then

regular agents with fewer than (2f + 1) neighbors can distinguish between every pair

of hypotheses. For such agents, the assertion of the theorem then follows directly

from Lemma 5.8.1, and update rules (5.3) and (5.14).

Case 2: We now focus only on regular agents i satisfying |Ni| ≥ (2f + 1). A key

property of the LFRHE algorithm (Algo. 4) that will be used throughout the proof
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is as follows. For any i ∈ R, and any θ ∈ Θ, the filtering operation in line 7 of Algo.

4 ensures that at each t ∈ N, we have

µj,t(θ) ∈ Conv(Ψθ
i,t),∀j ∈Mθ

i,t, (5.56)

where

Ψθ
i,t , {µl,t(θ) : l ∈ Ni ∩R}, (5.57)

and Conv(Ψθ
i,t) is used to denote the convex hull formed by the points in the set Ψθ

i,t

(recall that Mθ
i,t was defined in line 8 of Algo 4 to be the set of agents in Ni whose

beliefs are retained by agent i after it removes the highest f and lowest f beliefs

µj,t(θ), j ∈ Ni). In words, any neighboring belief (on a particular hypothesis) that

agent i uses in the update rule (5.13) lies in the convex hull of the actual beliefs of its

regular neighbors (on that particular hypothesis). To see why (5.56) is true, partition

the neighbor set Ni of a regular agent into three sets U θi,t,Mθ
i,t, and J θ

i,t as follows.

Sets U θi,t and J θ
i,t are each of cardinality f , and contain neighbors of agent i that

transmit the highest f and the lowest f actual beliefs respectively, on the hypothesis

θ, to agent i at time-step t. The set Mθ
i,t contains the remaining neighbors of agent

i, and is non-empty at every time-step since |Ni| ≥ (2f + 1). If Mθ
i,t ∩ A = ∅,

then (5.56) holds trivially. Thus, consider the case when there are adversaries in

the set Mθ
i,t, i.e., Mθ

i,t ∩ A 6= ∅. Given the f -locality of the adversarial model, and

the nature of the filtering operation in the LFRHE algorithm, we infer that for each

j ∈ Mθ
i,t ∩ A, there exist regular agents u, v ∈ Ni ∩ R, such that u ∈ U θi,t, v ∈ J θ

i,t,

and µv,t(θ) ≤ µj,t(θ) ≤ µu,t(θ). This establishes our claim regarding equation (5.56).

With the above property in hand, let Ω̄ ⊆ Ω denote the set of sample paths for

which assertions (i)-(iii) in Lemma 5.8.1 hold when restricted to the set of regular

agents R. Since the evolution of the local beliefs are unaffected by the presence of

adversaries, Lemma 5.8.1 implies Pθ?(Ω̄) = 1. Now as in Lemma 5.8.2, fix a sample

path ω ∈ Ω̄. Define γ1 , mini∈R πi,0(θ?), pick a small number δ > 0 satisfying δ < γ1,

and observe that arguments similar to those in the proof of Lemma 5.8.2 imply the

existence of a time-step t′(ω), such that for all t ≥ t′(ω), πi,t(θ
?) ≥ γ1− δ > 0,∀i ∈ R.



182

Let γ2(ω) , mini∈R{µi,t′(ω)(θ
?)}. As before, we claim γ2(ω) > 0. To establish this

claim, we need to answer the following question: can an adversarial agent cause its

out-neighbors to set their actual beliefs on θ? to be 0 by setting its own actual belief

on θ? to be 0? We argue that this is impossible under the LFRHE algorithm. By

way of contradiction, suppose there exists a time-step t̄(ω) satisfying:

t̄(ω) = min{t ∈ N : ∃i ∈ R with µi,t(θ
?) = 0}. (5.58)

In words, t̄(ω) represents the first time-step when some regular agent i sets its actual

belief on the true hypothesis to be zero. Clearly, t̄(ω) 6= 0 based on line 1 of Algo.

4. Suppose t̄(ω) is some positive integer, and focus on how agent i updates µi,t̄(ω)(θ
?)

based on (5.13). Following similar arguments as in the proof of Lemma 5.8.2, we

know that πi,t(θ
?) > 0,∀t ∈ N,∀i ∈ R. At the same time, every belief featuring in the

set Ψθ?

i,t̄(ω)−1 (as defined in equation (5.57)) is strictly positive based on the way t̄(ω)

is defined. In light of the above arguments, and based on (5.56), (5.57), we infer:

min{{µj,t̄(ω)−1(θ?)}j∈Mθ?

i,t̄(ω)−1
, πi,t̄(ω)(θ

?)} > 0. (5.59)

Thus, based on (5.13), we must have µi,t̄(ω)(θ
?) > 0, yielding the desired contradiction.

With η(ω) , min{γ1 − δ, γ2(ω)} > 0, one can easily verify the following by referring

to (5.13):

µi,t(θ
?) ≥ η(ω),∀t ≥ t′(ω), ∀i ∈ R. (5.60)

In particular, (5.60) follows by (i) noting that for each i ∈ R, πi,t′(ω)+1(θ?) ≥ η(ω),

and each belief featuring in the set Ψθ?

i,t′(ω) is lower bounded by η(ω), (ii) leveraging

(5.56), (5.57), and (iii) using a similar string of arguments as those used to arrive

at (5.25). Thus, we have established an analogous result as in Lemma 5.8.2 for the

regular agents.

To proceed, let us fix a false hypothesis θ 6= θ?, and define

K̃(θ?, θ) , min
v∈S(θ?,θ)∩R

Kv(θ
?, θ)



183

. Then, given any ε > 0, Lemma 5.8.1 implies the existence of a time-step t̃1(ω, θ, ε),

such that:

πi,t(θ) < e−(K̃(θ?,θ)−ε)t,∀t ≥ t̃1(ω, θ, ε),∀i ∈ S(θ?, θ) ∩R. (5.61)

Let t̃2 = max{t′(ω), t̃1(ω, θ, ε)}, where we have suppressed the dependence of t̃2 on

ω, θ and ε. For any agent i ∈ S(θ?, θ) ∩ R, observe that based on (5.56), (5.57) and

(5.60),

min{{µj,t(θ?)}j∈Mθ?
i,t
, πi,t+1(θ?)} ≥ η(ω),∀t ≥ t̃2. (5.62)

Combining the above with a similar line of argument as used to arrive at (5.28), we

obtain:

µi,t(θ) < C1(ω)e−(K̃(θ?,θ)−ε)t,∀t ≥ t̃2 + 1,∀i ∈ S(θ?, θ) ∩R, (5.63)

where C1(ω) = η(ω)−1. If V \ S(θ?, θ) is empty, then we are essentially done. Else,

define

L1(θ?, θ) , {i ∈ V \ S(θ?, θ) : |Ni ∩ S(θ?, θ)| ≥ (2f + 1)}. (5.64)

Whenever V \S(θ?, θ) is non-empty, we claim that L1(θ?, θ) (as defined above) is also

non-empty based on the hypothesis of the theorem. To see this, note that if L1(θ?, θ)

is empty, then C = V \ S(θ?, θ) is not (2f + 1)-reachable, violating the fact that G is

strongly (2f + 1)-robust w.r.t. S(θ?, θ). We claim that the following holds for each

i ∈ L1(θ?, θ) ∩R:

min
j∈Mθ

i,t

µj,t(θ) < C1(ω)e−(K̃(θ?,θ)−ε)t,∀t ≥ t̃2 + 1. (5.65)

To verify the above claim, pick any agent i ∈ L1(θ?, θ) ∩ R, and suppose t ≥ t̃2 + 1.

When |Mθ
i,t ∩ {S(θ?, θ) ∩ R}| > 0, the claim follows immediately based on (5.63).

Consider the case when |Mθ
i,t ∩ {S(θ?, θ) ∩ R}| = 0. Since i ∈ L1(θ?, θ), it has at

least (2f + 1) neighbors in S(θ?, θ), out of which at least f + 1 are regular based on

the f -locality of the adversarial model. Since the set J θ
i,t has cardinality f , it must

then be that |U θi,t ∩ {S(θ?, θ) ∩ R}| > 0. Let u ∈ Uθi,t ∩ {S(θ?, θ) ∩ R}. Based on the

wayMθ
i,t is defined, it must be that µj,t(θ) ≤ µu,t(θ) < C1(ω)e−(K̃(θ?,θ)−ε)t, ∀j ∈Mθ

i,t,

where the last inequality follows from (5.63). This establishes our claim regarding
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(5.65). Now consider the update of µi,t+1(θ) based on (5.13), when t ≥ t̃2 + 1. In

light of the above arguments, the numerator of the fraction on the R.H.S. of (5.13)

is upper-bounded by C1(ω)e−(K̃(θ?,θ)−ε)t, while the denominator is lower-bounded by

η(ω). We conclude that for all i ∈ L1(θ?, θ) ∩R:

µi,t(θ) < (C1(ω))2C2(θ, ε)e−(K̃(θ?,θ)−ε)t,∀t ≥ t̃2 + 2, (5.66)

where C2(θ, ε) = e(K̃(θ?,θ)−ε). With L0(θ?, θ) , S(θ?, θ), we recursively define the sets

Lr(θ?, θ), 1 ≤ r ≤ (n− 1) as:

Lr(θ?, θ) , {i ∈ V \
r−1⋃
q=0

Lq(θ?, θ) : |Ni ∩ {
r−1⋃
q=0

Lq(θ?, θ)}| ≥ (2f + 1)}. (5.67)

We claim that the following is true for all i ∈ Lr(θ?, θ) ∩R:

µi,t(θ) < (C1(ω))r+1(C2(θ, ε))re−(K̃(θ?,θ)−ε)t, ∀t ≥ t̃2 + (r + 1). (5.68)

To prove the claim, we proceed via induction on r. The base cases when r ∈ {0, 1}

have already been established. Suppose equation (5.68) holds for all r ∈ {0, . . . ,m−

1}, where m ∈ {2, . . . , n − 1}. The claim easily extends to the case when r = m by

noting that (i) Lm(θ?, θ) is non-empty if V \ {
⋃(m−1)
q=0 Lq(θ?, θ)} is non-empty (based

on the hypothesis of the theorem), (ii) any agent i ∈ Lm(θ?, θ) ∩ R has at least

(2f+1) neighbors in the set
⋃(m−1)
q=0 Lq(θ?, θ), of which at least f+1 are regular (based

on the f -locality of the adversarial model), and (iii) using the induction hypothesis

and arguments similar to those used to arrive at (5.66). We have thus verified the

correctness of (5.68). Now taking the natural log on both sides of (5.68), dividing

throughout by t, simplifying, and then taking the limit inferior on both sides of the

resulting inequality immediately leads to (5.15). Finally, to complete the proof, it

suffices to note that
⋃(n−1)
q=0 Lq(θ?, θ) = R.



185

6. DISTRIBUTED HYPOTHESIS TESTING WITH

SPARSE AND QUANTIZED COMMUNICATION

In this chapter, we revisit the problem of distributed inference/hypothesis testing, and

focus on scenarios where communication between agents is costly, and takes place over

channels with finite bandwidth. To reduce the number of communication rounds, we

develop a novel event-triggered distributed learning rule that is based on the princi-

ple of diffusing low beliefs on each false hypothesis. Building on this principle, we

design a trigger condition under which an agent broadcasts only those components

of its belief vector that have adequate innovation, to only those neighbors that re-

quire such information. We prove that our rule guarantees convergence to the true

state exponentially fast almost surely despite sparse communication, and that it has

the potential to significantly reduce information flow from uninformative agents to

informative agents. Next, to deal with finite-precision communication channels, we

propose a distributed learning rule that leverages the idea of adaptive quantization.

We show that by sequentially refining the range of the quantizers, every agent can

learn the truth exponentially fast almost surely, while using just 1 bit to encode its

belief on each hypothesis. For both our proposed algorithms, we rigorously charac-

terize the trade-offs between communication-efficiency and learning rate. By doing

so, we identify sparse communication regimes, and quantizer precision levels, under

which our rules recover the best known long-run learning rate for this problem.

6.1 Introduction

Over the last couple of decades, there has been a significant shift in the model of

computation - driven in part by the nature of emerging applications, and partly due

to concerns of reliability and scalability - from that of a single centralized computing
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node to parallel, distributed architectures comprising of several devices. Depending

upon the context, these devices could be smart phones interacting with the cloud in

a Federated Learning setup, or wearable devices, autonomous vehicles in a modern

Internet of Things (IoT) network. Typically, the devices in the above applications -

henceforth referred to as agents - run on limited battery power, and setting up com-

munication links between such agents incurs significant latency. Thus, the need arises

to reduce the number of communication rounds. Moreover, the communication links

themselves have finite bandwidth, dictating the need to compress messages appropri-

ately. In short, the communication bottleneck described above poses a major technical

challenge. Our goal in this chapter is to take a step towards resolving this challenge

for the canonical problem of distributed inference/hypothesis testing - a problem that

we studied in Chapter 5 under the assumption of a perfect communication model.

We briefly remind the reader of the problem setting.

Consider a network of agents, where each agent receives a stream of private signals

sequentially over time. The observations of each agent are generated by a common

underlying distribution, parameterized by an unknown static quantity which we call

the true state of the world. The task of the agents is to collectively identify this

unknown quantity from a finite family of hypotheses, while relying solely on local

interactions. As we discussed in Chapter 5, the distributed inference/hypothesis

testing problem enjoys a rich history [127,128,133,134,137,138,140,142,146,147,156],

where a variety of techniques have been proposed over the years, with more recent

efforts directed towards improving the convergence rate. These techniques can be

broadly classified in terms of the mechanism used to aggregate data: while consensus-

based linear [127, 128, 133, 134] and log-linear [137, 138, 140, 142, 156] rules have been

extensively studied, in Chapter 5 we introduced a min-protocol that leads to the best

known (asymptotic) learning rate for this problem.

In general, for the problem described above, no one agent can eliminate every false

hypothesis on its own to uniquely learn the true state. This leads to a fundamental

tension: although communication is costly (due to battery power constraints) and
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imprecise (due to finite bandwidths), it is also necessary. How should the agents

interact to learn the true state despite sparse and imprecise communication? At the

moment, a theoretical understanding of this question is lacking in the literature on

distributed hypothesis testing. In this context, our main contributions are as follows.

6.1.1 Summary of Contributions

To reduce the number of communication rounds, one needs to first answer a few

basic questions. (i) When should an agent exchange information with a neighbor?

(ii) What piece of information should the agent exchange? To address these questions

in a principled way, our first contribution is to develop a novel distributed learning

rule in Section 6.3 by drawing on ideas from event-triggered control [157, 158]. The

premise of our rule is based on diffusing low beliefs on each false hypothesis across the

network. Building on this principle, we design a trigger condition that carefully takes

into account the specific structure of the problem, and enables an agent to decide,

using purely local information, whether or not to broadcast its belief1 on a given

hypothesis to a given neighbor. Specifically, based on our event-triggered strategy,

an agent broadcasts only those components of its belief vector that have adequate

“innovation”, to only those neighbors that are in need of the corresponding pieces

of information. Thus, our approach not only reduces the number of communication

rounds, but also the amount of information transmitted in each round.

Our second contribution is to provide a detailed theoretical characterization of the

proposed event-triggered learning rule in Section 6.4. Specifically, in Theorem 6.4.1

we establish that our rule enables each agent to learn the true state exponentially

fast almost surely, under standard assumptions on the observation model and the

network topology. We characterize the learning rate of our algorithm as a function

of the agents’ relative entropies, the network structure, and parameters of the com-

munication model. In particular, we show that even when the inter-communication

1By an agent’s belief vector, we imply a distribution over the set of hypotheses; this vector gets
recursively updated over time as an agent acquires more information.
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intervals between the agents grow geometrically at a rate p > 1, our rule guarantees

exponentially fast learning at a network-dependent rate that scales inversely with p.

However, when such intervals grow polynomially, the learning rate remains the same

as the best known network-independent learning rate of [147]. Thus, our results pro-

vide various interesting insights into the relationship that exists between the rate of

convergence and the sparsity of the communication pattern.

Next, in Propositions 6.4.1 and 6.4.2, we demonstrate that our event-triggered

scheme has the potential to significantly reduce information flow from uninformative

agents to informative agents. Finally, in Theorem 6.4.3, we argue that if asymptotic

learning of the true state is the only consideration, then one can allow for communi-

cation schemes with arbitrarily long intervals between successive communications.

While our results above concern the aspect of sparse communication, in Section 6.5

we turn our attention to learning over communication channels with finite precision,

i.e., channels that can support only a finite number of bits. In a recent paper [140] that

looks at the same problem as us, the authors demonstrated in simulations that with

a quantized variant of their log-linear rule, the beliefs of the agents might converge

to a wrong hypothesis, if not enough bits are used to encode the beliefs. This raises

the following fundamental question. In order to learn the true state, how many bits

must an agent use to encode its belief on each hypothesis? To answer this question,

we develop a distributed learning rule based on the idea of adaptive quantization.

The key feature of our rule is to successively refine the range of the quantizers as

the agents acquire more information over time and narrow down on the truth. In

Theorem 6.6.1, we prove that even if every agent uses just 1 bit to encode its belief

on each hypothesis, all agents end up learning the truth exponentially fast almost

surely. The rate of learning, however, exhibits a dependence on the precision of the

quantizer - a dependence that we explicitly characterize. In doing so, we show that

if the number of bits used for encoding each hypothesis is chosen to be large enough

w.r.t. certain relative entropies, then one can recover the exact same long-run learning
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rate as with infinite precision, i.e., the rate obtained in [147]. This constitutes our

final contribution.

To summarize, this chapter (i) develops novel communication-efficient distributed

learning algorithms; (ii) provides detailed theoretical characterizations of their per-

formance; and, in particular, (iii) highlights various interesting trade-offs between

sparse and imprecise communication, and the learning rate.

A preliminary version of the results in this chapter appeared as [159], and is

available in part in the pre-print [160].

6.1.2 Related Work

Our work is closely related to the papers [161] and [162], each of which explores

the theme of event-driven communications for distributed learning. In [161], the

authors propose a rule where an agent queries the log-marginals of its neighbors only

if the total variation distance between its current belief and the Bayesian posterior

after observing a new signal falls below a pre-defined threshold. That is, an agent

communicates only if its current private signal is not adequately informative. Among

various other differences, the trigger condition we propose is not only a function of an

agent’s local observations, but also carefully incorporates feedback from neighboring

agents. Moreover, while we provide theoretical results to substantiate that our rule

leads to sparse communication patterns, [161] does so only via simulations. The

algorithm in [162] comes with no theoretical guarantees of convergence.

The aspect of sparse communication has been studied in the context of a variety of

coordination problems on networks, such as average consensus [163], distributed op-

timization [164,165], and static parameter estimation [166] - settings that differ from

the one we investigate in this chapter. To promote communication-efficiency, [164]

and [166] propose algorithms where inter-agent interactions become progressively

sparser over time. However, these algorithms are essentially time-triggered, i.e., they

do not adhere to the principle that “an agent should communicate only when it has
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something useful to say”. On the other hand, the strand of literature that deals with

event-driven communications for multi-agent systems focuses primarily on variations

of the basic consensus problem; we refer the reader to [167] for a survey of such tech-

niques. Notably, the common recipe for designing such techniques centers around a

Lyapunov argument for deterministic systems. However, it is not at all apparent how

such design ideas can be exploited for the stochastic inference problem we consider

here.2

Our work is also related to the classical literature on decentralized hypothesis

testing under communication constraints [168–170]. However, unlike our formulation,

these papers assume the presence of a centralized fusion center, and do not deal with

sequential data, i.e., each agent only receives one signal. Finally, we point out that the

adaptive quantization idea employed in this paper bears conceptual similarities to the

encoding-decoding strategy in [171] for stabilizing an LTI plant over a bit-constrained

channel, and also to a recent work on distributed optimization [172].

6.2 Model

The network and observation models that we discuss next are essentially the same

as those in Section 5.2 of Chapter 5. We repeat them here to keep the chapter

self-contained.

Network Model: We consider a group of agents V = {1, . . . , n}, and model

interactions among them via an undirected graph G = (V , E).3 An edge (i, j) ∈ E

indicates that agent i can directly transmit information to agent j, and vice versa.

The set of all neighbors of agent i is defined as Ni = {j ∈ V : (j, i) ∈ E}. We say

that G is rooted at C ⊆ V , if for each agent i ∈ V \ C, there exists a path to it from

some agent j ∈ C. For a connected graph G, we will use d(i, j) to denote the length

of the shortest path between i and j.

2The stochastic nature of our problem arises from the fact that the signals seen by each agent are
random variables.
3The results in this chapter can be easily extended to directed graphs.
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Observation Model: Let Θ = {θ1, θ2, . . . , θm} denote m possible states of the

world, with each state representing a hypothesis. A specific state θ? ∈ Θ, referred to

as the true state of the world, gets realized. Conditional on its realization, at each

time-step t ∈ N+, every agent i ∈ V privately observes a signal si,t ∈ Si, where Si
denotes the signal space of agent i. The joint observation profile so generated across

the network is denoted st = (s1,t, s2,t, . . . , sn,t), where st ∈ S, and S = S1×S2×. . .Sn.

Specifically, the signal st is generated based on a conditional likelihood function l(·|θ?),

the i-th marginal of which is denoted li(·|θ?), and is available to agent i. The signal

structure of each agent i ∈ V is thus characterized by a family of parameterized

marginals li = {li(wi|θ) : θ ∈ Θ, wi ∈ Si}. We make the same asssumptions on the

observation model as in Chapter 5: (i) The signal space of each agent i, namely Si, is

finite. (ii) Each agent i has knowledge of its local likelihood functions {li(·|θp)}mp=1, and

it holds that li(wi|θ) > 0,∀wi ∈ Si, and ∀θ ∈ Θ. (iii) The observation sequence of each

agent is described by an i.i.d. random process over time; however, at any given time-

step, the observations of different agents may potentially be correlated. (iv) There

exists a fixed true state of the world θ? ∈ Θ (unknown to the agents) that generates

the observations of all the agents. The probability space for our model is denoted

(Ω,F ,Pθ?), where Ω , {ω : ω = (s1, s2, . . .),∀st ∈ S,∀t ∈ N+}, F is the σ-algebra

generated by the observation profiles, and Pθ? is the probability measure induced by

sample paths in Ω. Specifically, Pθ? =
∞∏
t=1

l(·|θ?). We will use the abbreviation a.s. to

indicate almost sure occurrence of an event w.r.t. Pθ? .

The goal of each agent in the network is to eventually learn the true state θ?. As

we pointed out in Chapter 5, this task is complicated by the fact that for any given

agent i, certain states might be observationally equivalent to θ∗ from its perspective.

Essentially, what this means is that by inspecting its pattern of private signals, agent

i may not be able to uniquely identify the truth. Our broad goal in this chapter

is to develop distributed learning algorithms that not only resolve this identifiability

problem, but do so in the face of sparse and imprecise communication. To this end,

we recall the following definition from Chapter 5.
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Definition 6.2.1 (Source agents) An agent i is said to be a source agent for a pair

of distinct hypotheses θp, θq ∈ Θ if it can distinguish between them, i.e., if Ki(θp, θq) >

0, where Ki(θp, θq) represents the KL-divergence [149] between the distributions li(·|θp)

and li(·|θq). The set of source agents for pair (θp, θq) is denoted S(θp, θq).

6.3 An Event-Triggered Distributed Learning Rule

• Belief-Update Strategy: In this section, we develop an event-triggered dis-

tributed learning rule that enables each agent to eventually learn the truth, despite

infrequent information exchanges with its neighbors. Our approach requires each

agent i to maintain a local belief vector πi,t, and an actual belief vector µi,t, each

of which are probability distributions over the hypothesis set Θ. While agent i up-

dates πi,t in a Bayesian manner using only its private signals (see eq. (6.2)), to

formally describe how it updates µi,t, we need to first introduce some notation. Ac-

cordingly, let 1ji,t(θ) ∈ {0, 1} be an indicator variable which takes on a value of

1 if and only if agent j broadcasts µj,t(θ) to agent i at time t. Next, we define

Ni,t(θ) , {j ∈ Ni|1ji,t(θ) = 1} as the subset of agent i’s neighbors who broadcast

their belief on θ to i at time t. As part of our learning algorithm, each agent i keeps

track of the lowest belief on each hypothesis θ ∈ Θ that it has heard up to any given

instant t, denoted by µ̄i,t(θ). More precisely, µ̄i,0(θ) = µi,0(θ), and ∀t+ 1 ∈ N+,

µ̄i,t+1(θ) = min{µ̄i,t(θ), {µj,t+1(θ)}j∈{i}∪Ni,t+1(θ)}. (6.1)

We are now in position to describe the belief-update rule at each agent: πi,t and µi,t

are initialized with πi,0(θ) > 0, µi,0(θ) > 0,∀θ ∈ Θ, ∀i ∈ V (but otherwise arbitrarily),

and subsequently updated as follows ∀t+ 1 ∈ N+:

πi,t+1(θ) =
li(si,t+1|θ)πi,t(θ)

m∑
p=1

li(si,t+1|θp)πi,t(θp)
, (6.2)

µi,t+1(θ) =
min{µ̄i,t(θ), πi,t+1(θ)}

m∑
p=1

min{µ̄i,t(θp), πi,t+1(θp)}
. (6.3)
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•Communication Strategy: We now focus on specifying when an agent broadcasts

its belief on a given hypothesis to a neighbor. To this end, we first define a sequence

I = {tk} of event-monitoring time-steps, where t1 = 1, and tk+1− tk = g(k),∀k ∈ N+.

Here, g : R+ → R+ is a continuous, non-decreasing function that takes on integer

values at integers. We will henceforth refer to g(k) as the event-interval function.

At any given time t ∈ N+, let µ̂ij,t(θ) represent agent i’s belief on θ the last time

(excluding time t) it transmitted its belief on θ to agent j. Our communication

strategy is as follows. At t1, each agent i ∈ V broadcasts its entire belief vector µi,t

to every neighbor. Subsequently, at each tk, k ≥ 2, i transmits µi,tk(θ) to j ∈ Ni if

and only if the following event occurs:

µi,tk(θ) < γ(tk) min{µ̂ij,tk(θ), µ̂ji,tk(θ)}, (6.4)

where γ : N → (0, 1] is a non-increasing function, which we will henceforth call the

threshold function. If t /∈ I, then an agent i does not communicate with its neighbors

at time t, i.e., all inter-agent interactions are restricted to time-steps in I, subject

to the trigger-condition given by (6.4). Notice that we have not yet specified the

functional forms of g(·) and γ(·); we will comment on this topic later in Section 6.4.

• Summary: At each time-step t + 1 ∈ N+, and for each hypothesis θ ∈ Θ, the

sequence of operations executed by an agent i is summarized as follows. (i) Agent i

updates its local and actual beliefs on θ via (6.2) and (6.3), respectively. (ii) For each

neighbor j ∈ Ni, it decides whether or not to transmit µi,t+1(θ) to j, and collects

{µj,t+1(θ)}j∈Ni,t+1(θ).
4 (iii) It updates µ̄i,t+1(θ) via (6.1) using the (potentially) new

information it acquires from its neighbors at time t+ 1. We call the above algorithm

the Event-Triggered Min-Rule and outline its steps in Algorithm 5.

• Intuition: The premise of our belief-update strategy is based on diffusing low

beliefs on each false hypothesis. For a given false hypothesis θ, the local Bayesian

update (6.2) will generate a decaying sequence πi,t(θ) for each i ∈ S(θ∗, θ). Update

rules (6.1) and (6.3) then help propagate agent i’s low belief on θ to the rest of the

4If t+ 1 /∈ I, this step gets bypassed, and Ni,t+1(θ) = ∅,∀θ ∈ Θ.
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1 2 3

Fig. 6.1. The figure shows a network where only agent 1 is informative.
In Section 6.3, we design an event-triggered algorithm under which all
upstream broadcasts along the path 3 → 2 → 1 stop eventually almost
surely. At the same time, all agents learn the true state. We demonstrate
these facts both in theory (see Sec. 6.4), and in simulations (see Sec. 6.7).

Algorithm 5 (Event-Triggered Min-Rule) Each agent i ∈ V executes this algo-

rithm in parallel

Initialization: µi,0(θ) > 0, πi,0(θ) > 0, µ̄i,0(θ) = µi,0(θ),∀θ ∈ Θ, and
∑

θ∈Θ µi,0(θ) =

1,
∑

θ∈Θ πi,0(θ) = 1.

1: for t+ 1 ∈ N+ do

2: for θ ∈ Θ do

3: Update πi,t+1(θ) via (6.2), and µi,t+1(θ) via (6.3).

4: if t+ 1 = t1 then

5: Broadcast µi,t+1(θ) to each j ∈ Ni.

6: else

7: For each j ∈ Ni, broadcast µi,t+1(θ) to j if and only if t + 1 ∈ I and

the event condition (6.4) holds.

8: end if

9: Receive µj,t+1(θ) from each j ∈ Ni,t+1(θ), and update µ̄i,t+1(θ) via (6.1).

10: end for

11: end for

network. We point out that in contrast to the min-rule that we developed in Chapter

5, where for updating µi,t+1(θ), agent i used the lowest neighboring belief on θ at the

previous time-step t, our approach here requires an agent i to use the lowest belief

on θ that it has heard up to time t, namely µ̄i,t(θ). This modification will be crucial

in the convergence analysis of Algorithm 5.
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To build intuition regarding our communication strategy, let us consider the net-

work in Fig 6.1. Suppose Θ = {θ1, θ2}, θ∗ = θ1, and S(θ1, θ2) = 1, i.e., agent 1 is

the only informative agent. Since our principle of learning is based on eliminating

each false hypothesis, it makes sense to broadcast beliefs only if they are low enough.

Based on this observation, one naive approach to enforce sparse communication could

be to set a fixed low threshold, say β, and wait till beliefs fall below such a threshold

to broadcast. While this might lead to sparse communication initially, in order to

learn the truth, there must come a time beyond which the beliefs of all agents on the

false hypothesis θ2 always stay below β, leading to dense communication eventually.

The obvious fix is to introduce an event-condition that is state-dependent. Consider

the following candidate strategy: an agent broadcasts its belief on a state θ only if

it is sufficiently lower than what it was when it last broadcasted about θ. While an

improvement over the “fixed-threshold” strategy, this new scheme has the following

demerit: broadcasts are not agent-specific. In other words, going back to our exam-

ple, agent 2 (resp., agent 3) might transmit unsolicited information to agent 1 (resp.,

agent 2) - information, that agent 1 (resp., agent 2) can do without. To remedy this,

one can consider a request/poll based scheme as in [161] and [173], where an agent

receives information from a neighbor only by polling that neighbor. However, now

each time agent 2 needs information from agent 1, it needs to place a request, the

request itself incurring extra communication.

Given the above issues, we ask: Is it possible to devise an event-triggered scheme

that eventually stops unnecessary broadcasts from agents 3 to 2, and 2 to 1, while

preserving essential information flow from agents 1 to 2, and 2 to 3? More generally,

we seek a triggering rule that can reduce transmissions from uninformative agents

to informative agents. This leads us to the event condition in Eq. 6.4. For each

θ ∈ Θ, an agent i broadcasts µi,t(θ) to a neighbor j ∈ Ni only if µi,t(θ) has adequate

“innovation” w.r.t. i’s last broadcast about θ to j, and j’s last broadcast about θ

to i. A decreasing threshold function γ(t) makes it progressively harder to satisfy

the event condition in Eq. 6.4, demanding more innovation to merit broadcast as
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time progresses.5 The rationale behind checking the event condition only at time-

steps in I is twofold.6 First, it saves computations since the event condition need

not be checked all the time. Second, and more importantly, it provides an additional

instrument to control communication-sparsity on top of event-triggering. Indeed, a

monotonically increasing event-interval function g(·) implies fewer agent interactions

with time, since all potential broadcasts are restricted to I. In particular, without the

event condition in Eq. 6.4, our communication strategy would boil down to a simple

time-triggered rule, akin to the one studied in our recent work [159].

We close this section by highlighting that our event condition (i) is θ-specific, since

an agent may not be equally informative about all states7; (ii) is neighbor-specific,

since not all neighbors might require information; (iii) is problem-specific, since it is

built upon the principle of eliminating false hypotheses by diffusing low beliefs; and

(iv) can be checked using local information only.

6.4 Theoretical Guarantees for Algorithm 5

In this section, we state the main results pertaining to our Event-Triggered

Min-Rule, and then discuss their implications. Proofs of these results are deferred

to Section 6.9.1. To state the first result concerning the convergence of our learning

rule, let G(·) be used to denote the integral of g(·), and G−1(·) represent the inverse

of G(·). Since g(·) is strictly positive by definition, G(·) is strictly increasing, and

hence, G−1(·) is well-defined.

Theorem 6.4.1 Suppose the functions g(·) and γ(·) satisfy:

lim
t→∞

G(G−1(t)− 2)

t
= α ∈ (0, 1]; lim

t→∞

log(1/γ(t))

t
= 0. (6.5)

5We will see later on (Prop. 6.4.2) that for the network in Fig. 6.1, this scheme provably stops
communications from agents 3 to 2, and 2 to 1, eventually.
6While this might appear similar to the Periodic Event-Triggering (PETM) framework [174] where
events are checked periodically, the sequence I can be significantly more general than a simple
periodic sequence.
7This is precisely the motivation behind tracking changes in individual components of the belief
vector, as opposed to looking at changes in the overall belief vector using, for instance, the total
variation metric.
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Furthermore, suppose the following conditions hold. (i) For every pair of hypotheses

θp, θq ∈ Θ, the source set S(θp, θq) is non-empty. (ii) The communication graph G is

connected. Then, Algorithm 5 guarantees the following.

• (Consistency): For each agent i ∈ V, µi,t(θ
?)→ 1 a.s.

• (Exponentially Fast Rejection of False Hypotheses): For each agent

i ∈ V, and for each false hypothesis θ ∈ Θ \ {θ?}, the following holds:

lim inf
t→∞

− log µi,t(θ)

t
≥ max

v∈S(θ?,θ)
αd(v,i)Kv(θ

?, θ) a.s. (6.6)

At this point, it is natural to ask: For what classes of functions g(·) does the result

of Theorem 6.4.1 hold? The following result provides an answer.

Corollary 6.4.2 Suppose the conditions in Theorem 6.4.1 hold.

(i) Suppose g(x) = xp,∀x ∈ R+, where p is any positive integer. Then, for each

θ ∈ Θ \ {θ?}, and i ∈ V:

lim inf
t→∞

− log µi,t(θ)

t
≥ max

v∈S(θ?,θ)
Kv(θ

?, θ) a.s. (6.7)

(ii) Suppose g(x) = px,∀x ∈ R+, where p is any positive integer. Then, for each

θ ∈ Θ \ {θ?}, and i ∈ V:

lim inf
t→∞

− log µi,t(θ)

t
≥ max

v∈S(θ?,θ)

Kv(θ
?, θ)

p2d(v,i)
a.s. (6.8)

Proof The proof follows by directly computing the limit in Eq. (6.5). For case (i),

α = 1, and for case (ii), α = 1/p2.

Clearly, based on the rules of Algorithm 5, the communication pattern between

the agents is at least as sparse as the sequence I. The event-triggering strategy that

we employ introduces further sparsity, as we establish in the next result.
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Proposition 6.4.1 Suppose the conditions in Theorem 6.4.1 are met. Then, there

exists Ω̄ ⊆ Ω such that Pθ∗(Ω̄) = 1, and for each ω ∈ Ω̄, ∃T1(ω), T2(ω) <∞ such that

the following hold.

(i) At each tk ∈ I such that tk > T1(ω), 1ij,tk(θ
∗) 6= 1,∀i ∈ V and ∀j ∈ Ni.

(ii) Consider any θ 6= θ∗, and i /∈ S(θ∗, θ). Then, at each tk > T2(ω), ∃j ∈ Ni such

that 1ij,tk(θ) 6= 1.8

The following result is an immediate application of the above proposition.

Proposition 6.4.2 Suppose the conditions in Theorem 6.4.1 are met. Additionally,

suppose G is a tree graph, and for each pair θp, θq ∈ Θ, |S(θp, θq)| = 1. Consider any

θ 6= θ∗, and let S(θ∗, θ) = vθ. Then, each agent i ∈ V \ {vθ} stops broadcasting its

belief on θ to its parent in the tree rooted at vθ eventually almost surely.

A few comments are now in order.

• On the nature of g(·) and γ(·): Intuitively, if the event-interval function g(·)

does not grow too fast, and the threshold function γ(·) does not decay too fast, one

should expect things to fall in place. Theorem 6.4.1 makes this intuition precise by

identifying conditions on g(·) and γ(·) that lead to exponentially fast learning of the

truth. In particular, our framework allows for a considerable degree of freedom in

the choice of g(·) and γ(·). Indeed, from (6.5), we note that any γ(·) that decays

sub-exponentially works for our purpose. Moreover, Corollary 6.4.2 reveals that up

to integer constraints, g(·) can be any polynomial or exponential function.

• Trade-offs between sparse communication and learning rate: What is

the price paid for sparse communication? To answer the above question, we set as

benchmark the scenario studied in our previous work [147], where we did not ac-

count for communication efficiency. There, we showed that each false hypothesis

θ gets rejected exponentially fast by every agent at the network-independent rate

8In this claim, j might depend on tk.
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maxv∈V Kv(θ
∗, θ) - the best known rate in the existing literature on this problem.9

From (6.6), we note that under highly sparse communication regimes which corre-

spond to α < 1, although learning occurs exponentially fast, the learning rate gets

lowered relative to [147]. Moreover, unlike [147], (6.6) reveals that the asymptotic

learning rate is network-dependent and agent-specific, i.e., different agents may dis-

cover the truth at different rates. In particular, when considering the asymptotic

rate of rejection of a particular false hypothesis at a given agent i, notice from the

R.H.S. of (6.6) that one needs to account for the attenuated relative entropies of the

corresponding source agents, where the attenuation factor scales exponentially with

the distances of agent i from such source agents. An instance of the above scenario

is when the inter-communication intervals grow geometrically at rate p > 1; see case

(ii) of Corollary 6.4.2.

On the other hand, from case (i) of Corollary 6.4.2, we glean that, polynomially

growing inter-communication intervals, coupled with our proposed event-triggering

strategy, lead to no loss in the long-term learning rate relative to the benchmark case

in [147], i.e., as far as asymptotic performance is concerned, communication-efficiency

comes essentially for “free” under this regime.

• Sparse communication introduced by event-triggering: Observe that

being able to eliminate each false hypothesis is enough for learning the true state. In

other words, agents need not exchange their beliefs on the true state (of course, no

agent knows a priori what the true state is). Our event-triggering scheme precisely

achieves this, as evidenced by claim (i) of Proposition 6.4.1: every agent stops broad-

casting its belief on θ∗ eventually almost surely. In addition, an important property

of our event-triggering strategy is that it reduces information flow from uninformative

agents to informative agents. To see this, consider any false hypothesis θ 6= θ∗, and

an agent i /∈ S(θ∗, θ). Since i /∈ S(θ∗, θ), agent i’s local belief πi,t(θ) will stop decaying

eventually, making it impossible for agent i to lower its actual belief µi,t(θ) without

9For linear [127,128,133,134] and log-linear [137,138,140,142,156] learning rules, the corresponding
rate is a convex combination of the relative entropies Kv(θ

∗, θ), v ∈ V.
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the influence of its neighbors. Consequently, when left alone between consecutive

event-monitoring time-steps, i will not be able to leverage its own private signals to

generate enough “innovation” in µi,t(θ) to broadcast to the neighbor who most re-

cently contributed to lowering µi,t(θ). The intuition here is simple: an uninformative

agent cannot outdo the source of its information. This idea is made precise in claim

(ii) of Proposition 6.4.1. To further demonstrate this facet of our rule, Proposition

6.4.2 stipulates that when the baseline graph is a tree, then all upstream broadcasts

to informative agents stop after a finite period of time.

6.4.1 Asymptotic Learning of the Truth

If asymptotic learning of the true state is all one cares about, i.e., if exponential

convergence is no longer a consideration, then one can allow for arbitrarily sparse

communication patterns, as we shall now demonstrate. Accordingly, we first allow

the baseline graph G(t) = (V , E(t)) to now change over time. To allow for this

generality, we set I = N+, i.e., the event condition (6.4) is now monitored at each

time-step. Furthermore, we set γ(t) = γ ∈ (0, 1],∀t ∈ N. At each time-step t ∈ N+,

and for each θ ∈ Θ, an agent i ∈ V decides whether or not to broadcast µi,t(θ) to

an instantaneous neighbor j ∈ Ni(t) by checking the event condition (6.4). While

checking this condition, if agent i has not yet transmitted to (resp., heard from)

agent j about θ prior to time t, then it sets µ̂ij,t(θ) (resp., µ̂ji,t(θ)) to 1. Update rules

(6.1), (6.2), (6.3) remain the same, with Ni,t(θ) now interpreted as Ni,t(θ) , {j ∈

Ni(t)|1ji,t(θ) = 1}. Finally, by an union graph over an interval [t1, t2], we will imply

the graph with vertex set V , and edge set ∪t2τ=t1E(τ). With these modifications in

place, we have the following result.

Theorem 6.4.3 Suppose for every pair of hypotheses θp, θq ∈ Θ, S(θp, θq) is non-

empty. Furthermore, suppose for each t ∈ N+, the union graph over [t,∞) is rooted

at S(θp, θq). Then, the event-triggered distributed learning rule described above guar-

antees µi,t(θ
∗)→ 1 a.s. ∀i ∈ V .
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While a result of the above flavor is well known for the basic consensus setting

[175], we are unaware of its analogue for the distributed inference problem. When

G(t) = G, ∀t ∈ N, we observe from Theorem 6.4.3 that, as long as each agent transmits

its belief vector to every neighbor infinitely often, all agents will asymptotically learn

the truth. In particular, other than the above requirement, our result places no

constraints on the frequency of agent interactions.

6.5 A Distributed Learning Rule based on Adaptive Quantization

The focus of Section 6.3 was on designing an algorithm that guarantees learning

despite sparse communication. In this section, we turn our attention to promoting

communication-efficiency via a complementary mechanism, namely, by compressing

the amount of information transmitted by each agent. Our investigations here are

motivated by the fact that in practice, communication channels modeling the inter-

actions between agents have finite bandwidth. Accordingly, let us suppose that each

agent i uses only B(θ) bits to encode its belief on θ. Under what conditions on B(θ)

will each agent eventually learn the true state?

To answer the above question, we need to design an appropriate quantization

scheme, which, in turn, requires resolving the following issues. (1) The scheme should

be such that the belief of each agent on θ∗ converges exactly to 1, as opposed to

getting stuck in a neighborhood of 1. There are in fact various examples in the

literature where due to quantization effects, the iterates of the algorithm converge to

a neighborhood of the desired point [176–178]. (2) Precaution needs to be taken to

ensure that the belief of an agent on θ∗ never gets quantized to 0. Indeed, it might

very well be that during an initial transient phase, the belief of some agent on θ∗ falls

inadvertently. If the quantization scheme is not designed appropriately, such a low

belief on θ∗ might get quantized to a 0 value, causing every agent to eventually place

a 0 belief on the true state. This is a serious issue that needs to be addressed, and,

in fact, this exact phenomenon has been reported in a simulation study conducted
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in [140]. Specifically, the authors in [140] present an example where using 12 bits

to represent each hypothesis leads to learning the true state, but using 8 bits results

in convergence to a false hypothesis. In what follows, we propose an algorithm that

tackles the above issues; later, we argue that our algorithm guarantees exponentially

fast learning even when merely 1 bit is used to encode each hypothesis.

To proceed, suppose we wish to encode a scalar x that belongs to the interval [L,U ]

using B bit precision. Then, we first divide the interval [L,U ] into 2B bins, each of

equal width. Next, we identify the bin to which x belongs, and let the quantized value

of x simply be the upper end point of that bin. Let this entire operation be described

formally by a map QR,B(·) with range parameter R = [L,U ] and bit parameter B.

Then, we haveQR,B(x) = L+dd(x−L)/de, where d = (U−L)/2B. The above encoder

will serve as a basic building block for encoding each component of an agent’s belief

vector, and our key idea will be to sequentially refine the range of the quantizer as

more information is acquired over time.

• Encoding Beliefs: As with Algorithm 5, each agent i maintains a local belief

vector πi,t, and an actual belief vector µi,t, which are updated via (6.2) and (6.3),

respectively. In addition, for encoding its belief on θ, an agent i maintains a quantity

qi,t(θ), with qi,0(θ) = 1,∀θ ∈ Θ. At each time-step t+ 1 ∈ N+, and for each θ ∈ Θ, an

agent checks whether µi,t+1(θ) ∈ [0, qi,t(θ)). If so, it encodes µi,t+1(θ) as qi,t+1(θ) =

QRi,t(θ),B(θ)(µi,t+1(θ)), with range parameter Ri,t(θ) = [0, qi,t(θ)], and a bit parameter

B(θ) that will be specified later on. More precisely, if µi,t+1(θ) ∈ [0, qi,t(θ)), then

µi,t+1(θ) is encoded as:10

qi,t+1(θ) =
qi,t(θ)

2B(θ)
dµi,t+1(θ)2B(θ)/qi,t(θ)e. (6.9)

Agent i then broadcasts the bit-level representation of qi,t+1(θ), denoted by q̄i,t+1(θ),

to each neighbor j ∈ Ni. If µi,t+1(θ) ≥ qi,t(θ), then agent i sets qi,t+1(θ) = qi,t(θ), and

does not broadcast about θ to any neighbor. In words, at each t + 1 ∈ N, an agent

10Note that based on our encoding strategy, the quantized belief on any hypothesis is greater than
or equal to the actual belief on that hypothesis. It is precisely this property of our quantizer that
prevents beliefs on the true state from getting quantized to 0. See also Lemma 6.9.3.
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Algorithm 6 (Quantized Min-Rule) Each agent i ∈ V executes this algorithm in

parallel

Initialization: πi,0(θ), µi,0(θ) and µ̄i,0(θ) initialized as in Algorithm 5; qi,0(θ) =

1,∀θ ∈ Θ.

1: for t+ 1 ∈ N+ do

2: for θ ∈ Θ do

3: Update πi,t+1(θ) via (6.2), and µi,t+1(θ) via (6.3).

4: if µi,t+1(θ) ∈ [0, qi,t(θ)) then

5: Encode µi,t+1(θ) via (6.9), and broadcast q̄i,t+1(θ) to each j ∈ Ni.

6: else

7: Set qi,t+1(θ) = qi,t(θ), and do not broadcast about θ.

8: end if

9: for j ∈ Ni do

10: if j ∈ Ni,t+1(θ) then

11: Decode qj,t+1(θ) from q̄j,t+1(θ).

12: else

13: Set qj,t+1(θ) = qj,t(θ).

14: end if

15: end for

16: Update µ̄i,t+1(θ) via (6.10).

17: end for

18: end for

i broadcasts about θ if and only if µi,t+1(θ) is strictly lower than the last quantized

belief on θ that it broadcasted, namely qi,t(θ). This last transmitted belief qi,t(θ)

also serves as the upper limit of the range Ri,t(θ) of the quantizer used for encoding
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µi,t+1(θ), while the lower limit remains at 0 for all time. The above steps constitute

our adaptive quantization scheme.11

• Decoding Beliefs: For decoding beliefs, we make the following natural as-

sumptions. For every θ ∈ Θ, each agent is aware of (i) the initial quantizer range,

i.e., the fact that qi,0(θ) = 1,∀θ ∈ Θ,∀i ∈ V ; (ii) the nature of the encoding opera-

tion QR,B(·); and (iii) the bit precision B(θ). Now consider any agent j ∈ Ni. At

any time-step t + 1 ∈ N+, if j receives q̄i,t+1(θ) from i, then it can exactly recover

qi,t+1(θ). This follows from the assumptions we made above, and the fact that node

j has access to qi,t(θ), since it was the last quantized belief on θ that was transmitted

by i to each of its neighbors. If j does not hear about θ from node i, then on its end,

it sets qi,t+1(θ) = qi,t(θ).

Based on the above discussion, it should be apparent that at each time-step t ∈ N,

and for each θ ∈ Θ, the value of qi,t(θ) held by an agent i is consistent with those held

by each of its neighbors - a fact that is crucial for correctly decoding the messages

transmitted by i. Finally, upon completion of the decoding step, an agent i updates

µ̄i,t+1(θ) as:

µ̄i,t+1(θ) = min{µ̄i,t(θ), µi,t+1(θ), {qj,t+1(θ)}j∈Ni}. (6.10)

We call the above algorithm the Quantized Min-Rule, and outline its steps in

Algorithm 6. In Line 10 of this algorithm, Ni,t+1(θ) has the same meaning as in the

rest of this paper: it represents the neighbors of i who broadcast their beliefs (in this

case, quantized beliefs) on θ to i at time t+ 1.

6.6 Theoretical Guarantees for Algorithm 6

The following is our main result concerning the convergence guarantees of Algo-

rithm 6.

11The adaptive nature of our encoding strategy stems from the fact that the range of the quantizer
used to encode each hypothesis is dynamically updated.
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Theorem 6.6.1 Suppose every agent uses at least one bit to encode each hypothesis,

i.e., let B(θ) ≥ 1, ∀θ ∈ Θ. Furthermore, suppose the following conditions hold. (i)

For every pair of hypotheses θp, θq ∈ Θ, the source set S(θp, θq) is non-empty. (ii) The

communication graph G is connected. Then, Algorithm 6 guarantees the following.

• (Consistency): For each agent i ∈ V, µi,t(θ
?)→ 1 a.s.

• (Exponentially Fast Rejection of False Hypotheses): For each agent

i ∈ V, and for each false hypothesis θ ∈ Θ \ {θ?}, the following holds:

lim inf
t→∞

− log µi,t(θ)

t
≥ max

v∈S(θ?,θ)
Hv(θ

∗, θ) a.s., (6.11)

where Hv(θ
∗, θ) = min{B(θ) log 2, Kv(θ

?, θ)}.

We prove the above result in Section 6.9.2. Under what conditions on B(θ) can one

recover the same long-run learning rate as with infinite precision? The following

result, which is an immediate corollary of Theorem 6.6.1, provides an answer.

Corollary 6.6.2 Suppose the conditions in Theorem 6.6.1 hold. Moreover, for each

θ ∈ Θ, suppose the bit precision B(θ) is chosen such that

B(θ) ≥ 1

log 2

(
max
θ∗ 6=θ

max
i∈V

Ki(θ
∗, θ)

)
. (6.12)

Then, for each θ ∈ Θ \ {θ?}, and i ∈ V, we have:

lim inf
t→∞

− log µi,t(θ)

t
≥ max

v∈S(θ?,θ)
Kv(θ

?, θ) a.s. (6.13)

We now remark on the implications of the above results.

• 1-bit precision per hypothesis is sufficient for learning: Under standard

assumptions on the observation model and the network structure, Theorem 6.6.1

reveals that based on Algorithm 6, it is possible to learn the true state exponentially

fast while using just 1 bit to encode each hypothesis. Thus, at any given time-step,
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it suffices for each agent to broadcast an m-bit binary vector, where m is the number

of hypotheses. This is a key implication of Theorem 6.6.1.

• Trade-offs between bit-precision and learning rate: While 1-bit precision

per hypothesis is adequate for exponentially fast learning, the rate of learning may no

longer be that with infinite precision. To understand this better, recall that with infi-

nite precision, the basic min-rule in [147] allows each agent to rule out a false hypoth-

esis θ exponentially fast at the rate maxi∈V Ki(θ
∗, θ).12 Let v ∈ argmaxi∈V Ki(θ

∗, θ).

Although agent v’s belief on θ may decay to zero relatively fast, its ability to convey

such a low belief to its neighbors is limited by the precision of the quantizer, when

beliefs can no longer be transmitted perfectly. In particular, observe that the R.H.S.

of (6.11) simplifies to min{B(θ) log 2,maxi∈S(θ∗,θ) Ki(θ
?, θ)}. This suggests that one

can recover the same rate of rejection of θ as with infinite precision if and only if

B(θ) log 2 ≥ maxi∈S(θ∗,θ) Ki(θ
?, θ), i.e., a low bit-precision can come at the expense of

a reduced learning rate. To sum up, just as Theorem 6.4.1 highlighted the trade-offs

between sparse communication and the learning rate, Theorem 6.6.1 quantifies the

trade-offs between imprecise communication and the learning rate.

• Recovering the same learning rate as with perfect communication:

Intuitively, the condition in Eq. (6.12) can be interpreted as follows. To be able

to reject θ 6= θ∗ at the same rate as with perfect communication, the range of the

quantizer used to encode θ must shrink at least as fast as the fastest possible rate at

which an agent can reject θ on its own, while accounting for the realization of any

state θ∗ 6= θ. However, in order to pick B(θ) to satisfy the condition in Eq. (6.12), an

agent requires knowledge of the relative entropies of all other agents in the network.

Thus, maintaining the same learning rate as with perfect communication comes at

the price of global knowledge of the agents’ likelihood models.

Remark 6.6.3 Thus far, we have treated the aspects of event-triggering and quanti-

zation separately, with the aim of presenting the main algorithmic ideas and results

associated with each of these themes in a clear, understandable manner. One can,

12Observe that setting B(θ) =∞ in (6.11) leads to the same conclusion.
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of course, combine these ideas in a variety of ways. For instance, one natural ap-

proach could be to replace the actual beliefs in the event condition of Eq. (6.4) with

their quantized counterparts. Specifically, at each tk, k ≥ 2, an agent i checks if

µi,tk(θ) < γ(tk) min{qij,tk−1
(θ), qji,tk−1

(θ)}, where qij,t(θ) is the last quantized belief on

θ transmitted by i to j up to time t.13 If this condition holds, i encodes µi,tk(θ) as:

qij,tk(θ) =
qij,tk−1

(θ)

2B(θ)
dµi,tk(θ)2B(θ)/qij,tk−1

(θ)e. (6.14)

It then broadcasts qij,tk(θ) to agent j. If the event condition does not hold, agent i

sets qij,tk(θ) = qij,tk−1
(θ). It seems reasonable to expect that the above approach yields

guarantees that are a blend of those in Theorems 6.4.1 and 6.6.1; we do not investigate

this topic further here.

6.7 A Simulation Example

In this section, we validate our theoretical findings via a simple simulation exam-

ple. To do so, we consider the network in Fig. 6.1. Suppose Θ = {θ1, θ2}, θ∗ = θ1,

and let the signal space for each agent be {0, 1}. The likelihood models are as fol-

lows: l1(0|θ1) = 0.7, l1(0|θ2) = 0.6, and li(0|θ1) = li(0|θ2) = 0.5,∀i ∈ {2, 3}. Clearly,

agent 1 is the only informative agent. To isolate the impact of our event-triggering

strategy, we set g(k) = 1,∀k ∈ N+, i.e., the event condition in Eq. 6.4 is monitored

at every time-step. We set the threshold function as γ(k) = 1/k2. The performance

of Algorithm 5 is depicted in Fig. 6.2. We make the following observations. (i)

From Fig. 6.2(a), we note that all agents eventually learn the truth. (ii) From Fig.

6.2(b), we note that the asymptotic rate of rejection of the false hypothesis θ2, namely

qi,t(θ2) = − log(µi,t(θ2))/t, complies with the theoretical bound in Theorem 6.4.1. (iii)

From Fig. 6.2(c), we note that after the first time-step, all agents stop broadcasting

about the true state θ1, complying with claim (i) of Proposition 6.4.1. (iv) From Fig.

6.2(d), we note that broadcasts about θ2 along the path 3→ 2→ 1 stop after the first

13Recall from Section 6.3 that the event condition (6.4) was checked at certain event-monitoring
time-steps tk ∈ I.
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Fig. 6.2. Plots concerning the performance of Algorithm 5 for the net-
work in Fig 6.1. Fig. 6.2(a) plots the belief evolutions on the true state
θ1. Fig. 6.2(b) plots the rate at which each agent rejects the false hy-
pothesis θ2, namely qi,t(θ2) = − log(µi,t(θ2))/t. Fig.’s 6.2(c) and 6.2(d)
demonstrate the sparse communication patterns generated by our event-
triggering scheme.

time-step, in accordance with claim (ii) of Proposition 6.4.1, and Proposition 6.4.2.

We also observe that in the first 4000 time-steps, agent 1 (resp., agent 2) broadcasts

its belief on θ2 to agent 2 (resp., agent 3) only 7 times (resp., 6 times). Despite

such drastic reduction in the number of communication rounds, all agents still learn

the truth at the best known learning rate for this problem. This demonstrates the

effectiveness of our proposed framework.



209

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600

0

0.2

0.4

0.6

0.8

1

1.2

(a) (b)

Fig. 6.3. Plots concerning the performance of Algorithm 6 for the network
in Fig 6.1, when 1 bit is used to encode each hypothesis. Figures 6.3(a) and
6.3(b) are analogous to Figures 6.2(a) and 6.2(b). These plots demonstrate
that while learning is possible even with 1-bit precision, the learning rate
exhibits a dependence on the quantizer precision level.

As our second simulation study, we wish to investigate the performance of our

quantized learning rule, namely Algorithm 6. To do so, keeping everything else the

same, suppose we now modify the likelihood model of agent 1 as follows: l(0|θ1) = 0.8

and l(0|θ2) = 0.2. Fig. 6.3 depicts the performance of Algorithm 6 for this scenario,

when B(θ1) = B(θ2) = 1, i.e., when 1 bit is used to encode each hypothesis. From

Fig. 6.3(a), we note that all agents learn the true state. Fig. 6.3(b) reveals that

the learning rates of the uninformative agents 2 and 3 are limited by the precision

of the quantizer. In particular, since K1(θ1, θ2) = 0.8318 > log(2), the learning

rates for these agents get saturated at log(2), exactly as suggested by Eq. (6.11)

in Theorem 6.6.1. Despite these quantization effects, we observe from Fig. 6.3(a)

that the beliefs of all agents converge to the true state quite fast - a fact that is not

adequately captured by our asymptotic learning rate analysis. This highlights the

need for a finer investigation into non-asymptotic trade-offs between the learning rate

and imperfect communication.
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6.8 Chapter Summary

In this chapter, we developed novel communication-efficient distributed learning

algorithms for addressing the distributed inference problem, subject to sparse and

imprecise communication between the agents. First, we proposed an event-triggered

learning rule, established that it guarantees exponentially fast convergence to the

truth with probability 1, and characterized the learning rate of our rule as a function

of the agents’ relative entropies, the network structure, and parameters of the com-

munication model. We discussed various trade-offs between the learning rate and the

sparsity of the communication pattern, and showed that, as far as only asymptotic

learning is concerned, it suffices for the agents to transmit their beliefs infinitely often,

with arbitrarily long intervals between communication time-steps.

Next, we focused on scenarios where the communication channels have finite band-

width, and developed a distributed learning rule that leverages the idea of adaptive

quantization. We proved that using our rule, each agent can learn the true state

exponentially fast almost surely, while using just one bit to encode its belief on each

hypothesis. We established a relationship between the learning rate and the quantizer

precision levels, and showed that, if the number of bits used to encode each hypothesis

is chosen to be large enough, then one can in fact recover the exact same asymptotic

learning rates as with infinite precision.

6.9 Omitted Proofs

6.9.1 Proofs pertaining to Section 6.4

In this section, we provide proofs of all the results stated in Section 6.4. We begin

by compiling various useful properties of our update rule which will come handy

during the course of our analysis.
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Lemma 6.9.1 Suppose the conditions in Theorem 6.4.1 hold. Then, there exists a

set Ω̄ ⊆ Ω with the following properties. (i) Pθ?(Ω̄) = 1. (ii) For each ω ∈ Ω̄, there

exist constants η(ω) ∈ (0, 1) and t′(ω) ∈ (0,∞) such that

πi,t(θ
?) ≥ η(ω), µ̄i,t(θ

?) ≥ η(ω),∀t ≥ t′(ω), ∀i ∈ V . (6.15)

(iii) Consider a false hypothesis θ 6= θ∗, and an agent i ∈ S(θ∗, θ). Then on each

sample path ω ∈ Ω̄, we have:

lim inf
t→∞

− log µi,t(θ)

t
≥ Ki(θ

?, θ). (6.16)

Proof The proof of claim (ii) rests on the same ideas as that of [147, Lemma 2];

we thus only sketch the main arguments for completeness. From [147, Lemma 2],

there exists a set Ω̄ ⊆ Ω with Pθ?(Ω̄) = 1 such that for each ω ∈ Ω̄, the following

are true for every i ∈ V : (i) πi,t(θ
∗) > 0,∀t ∈ N; and (ii) ∃δ > 0 and t′(ω) < ∞

such that πi,t(θ
∗) ≥ δ, ∀t ≥ t′(ω). Fix an ω ∈ Ω̄. Let ρ(ω) = mini∈V{µ̄i,t′(ω)−1(θ∗)}.

Based on update rules (6.1) and (6.3), observe that ρ(ω) > 0; for if not, this would

necessarily imply that πi,t(θ
∗) = 0 for some agent i at some time-step t ≤ t′(ω) − 1

- a contradiction given our choice of ω. Let η(ω) = min{δ, ρ(ω)}, fix an agent i, and

consider the update of µi,t′(ω)(θ
∗) based on (6.3):

µi,t′(ω)(θ
∗) =

min{µ̄i,t′(ω)−1(θ∗), πi,t′(ω)(θ
∗)}

m∑
p=1

min{µ̄i,t′(ω)−1(θp), πi,t′(ω)(θp)}

≥ η(ω)
m∑
p=1

πi,t′(ω)(θp)
= η(ω),

(6.17)

where the last equality follows from the fact that the local belief vectors generated

via (6.2) are valid probability distributions over Θ at each time-step, and hence
m∑
p=1

πi,t′(ω)(θp) = 1. The above argument applies identically to every agent in the

graph, and hence we have from (6.1) that

µ̄i,t′(ω)(θ
∗) = min{µ̄i,t′(ω)−1(θ∗), {µj,t′(ω)(θ

∗)}j∈{i}∪Ni,t′(ω)(θ
∗)} ≥ η(ω). (6.18)
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We have thus argued that for every agent i ∈ V , µi,t′(ω)(θ
∗) ≥ η(ω), µ̄i,t′(ω)(θ

∗) ≥ η(ω).

We can keep repeating the above analysis for each t > t′(ω) to establish (6.15). Claim

(iii) in Lemma 6.9.1 follows the same reasoning as [147, Lemma 3].

The above lemma informs us that the belief µv,t(θ) of an agent v ∈ S(θ∗, θ) decays

exponentially fast at a rate lower-bounded by Kv(θ
∗, θ) on a set of Pθ∗-measure 1.

How does this impact the belief µi,t(θ) of an agent i ∈ V \ S(θ∗, θ)? The following

result answers this question.

Lemma 6.9.2 Consider a false hypothesis θ ∈ Θ \ {θ?} and an agent v ∈ S(θ?, θ).

Suppose the conditions stated in Theorem 6.4.1 hold. Then, the following is true for

each agent i ∈ V:

lim inf
t→∞

− log µi,t(θ)

t
≥ αd(v,i)Kv(θ

?, θ) a.s. (6.19)

Proof Let Ω̄ ⊆ Ω be the set of sample paths for which assertions (i)-(iii) of Lemma

6.9.1 hold. Fix a sample path ω ∈ Ω̄, an agent v ∈ S(θ?, θ), and an agent i ∈ V .

When i = v, the assertion of Eq. (6.19) follows directly from Eq. (6.16) in Lemma

6.9.1. In particular, this implies that for a fixed ε > 0, ∃tv(ω, θ, ε) such that:

µv,t(θ) < e−(Kv(θ?,θ)−ε)t,∀t ≥ tv(ω, θ, ε). (6.20)

Moreover, since ω ∈ Ω̄, Lemma 6.9.1 guarantees the existence of a time-step t′(ω) <

∞, and a constant η(ω) > 0, such that on ω, πi,t(θ
?) ≥ η(ω), µ̄i,t(θ

?) ≥ η(ω),∀t ≥

t′(ω),∀i ∈ V . Let t̄v(ω, θ, ε) = max{t′(ω), tv(ω, θ, ε)}. Let tq > t̄v be the first even-

monitoring time-step in I to the right of t̄v.
14 Now consider any tk ∈ I such that

k ≥ q. In what follows, we will analyze the implications of agent v deciding whether

or not to broadcast its belief on θ to a one-hop neighbor j ∈ Nv at tk. To this end,

we consider the following two cases.

14We will henceforth suppress the dependence of various quantities on ω, θ, and ε for brevity.
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Case 1: 1vj,tk(θ) = 1, i.e., v broadcasts µv,tk(θ) to j at tk. Thus, since v ∈

Nj,tk(θ), we have µ̄j,tk(θ) ≤ µv,tk(θ) from (6.1). Let us now observe that ∀t ≥ tk + 1:

µj,t(θ)
(a)

≤ µ̄j,t−1(θ)
m∑
p=1

min{µ̄j,t−1(θp), πj,t(θp)}

(b)

≤ µv,tk(θ)
m∑
p=1

min{µ̄j,t−1(θp), πj,t(θp)}

(c)
<
e−(Kv(θ?,θ)−ε)tk

η
.

(6.21)

In the above inequalities, (a) follows directly from (6.3), (b) follows by noting that

the sequence {µ̄j,t(θ)} is non-increasing based on (6.1), and (c) follows from (6.20)

and the fact that all beliefs on θ? are bounded below by η for t ≥ t̄v.

Case 2: 1vj,tk(θ) 6= 1, i.e., v does not broadcast µv,tk(θ) to j at tk. From the

event condition in (6.4), it must then be that at least one of the following is true:

(a) µv,tk(θ) ≥ γ(tk)µ̂vj,tk(θ), and (b) µv,tk(θ) ≥ γ(tk)µ̂jv,tk(θ). Suppose µv,tk(θ) ≥

γ(tk)µ̂vj,tk(θ). From (6.20), we then have:

µ̂vj,tk(θ) ≤
µv,tk(θ)

γ(tk)
<
e−(Kv(θ?,θ)−ε)tk

γ(tk)
. (6.22)

In words, the above inequality places an upper bound on the belief of agent v on θ

when it last transmitted its belief on θ to agent j, prior to time-step tk; at least one

such transmission is guaranteed to take place since all agents broadcast their entire

belief vectors to their neighbors at t1. Noting that µ̄j,t(θ) ≤ µ̂vj,tk(θ), ∀t ≥ tk, using

(6.3), (6.22), and arguments similar to those for arriving at (6.21), we obtain:

µj,t(θ) <
e−(Kv(θ?,θ)−ε)tk

ηγ(tk)
≤ e−(Kv(θ?,θ)−ε)tk

ηγ(t)
,∀t ≥ tk + 1, (6.23)

where the last inequality follows from the fact that γ(·) is a non-increasing function

of its argument. Now consider the case when µv,tk(θ) ≥ γ(tk)µ̂jv,tk(θ). Following the

same reasoning as before, we can arrive at an identical upper-bound on µ̂jv,tk(θ) as in

(6.22). Using the definition of µ̂jv,tk(θ), and the fact that agent j incorporates its own

belief on θ in the update rule (6.1), we have that µ̄j,t(θ) ≤ µ̂jv,tk(θ),∀t ≥ tk. Using

similar arguments as before, observe that the bound in (6.23) holds for this case too.
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Combining the analyses of cases 1 and 2, referring to (6.21) and (6.23), and noting

that γ(t) ∈ (0, 1],∀t ∈ N, we conclude that the bound in (6.23) holds for each tk ∈ I

such that tk > t̄v. Now since tk+1 − tk = g(k), for any τ ∈ N+ we have:

tq+τ = tq +

q+τ−1∑
z=q

g(z). (6.24)

Next, noting that g(·) is non-decreasing, observe that:

tq +

q+τ∫
q

g(z − 1)dz ≤ tq+τ ≤ tq +

q+τ∫
q

g(z)dz. (6.25)

The above yields: l(q, τ) , tq + G(q + τ − 1) − G(q − 1) ≤ tq+τ ≤ tq + G(q + τ) −

G(q) , u(q, τ). Fix any time-step t > u(q, 1), let τ(t) be the largest index such that

u(q, τ(t)) < t, and τ̄(t) be the largest index such that tq+τ̄(t) < t. Observe:

t̄v < tq < tq+1 ≤ tq+τ(t) ≤ tq+τ̄(t) < t. (6.26)

Using the above inequality, the fact that l(q, τ(t)) ≤ tq+τ(t), and referring to (6.23),

we obtain:

µj,t(θ) <
e−(Kv(θ?,θ)−ε)tq+τ̄(t)

ηγ(t)
≤ e−(Kv(θ?,θ)−ε)l(q,τ(t))

ηγ(t)
(6.27)

From the definition of τ(t), we have q+ τ(t) = dG−1(t− tq +G(q))e− 1. This yields:

l(q, τ(t)) = tq +G(
⌈
G−1(t− tq +G(q))

⌉
− 2)−G(q − 1)

≥ tq +G(G−1(t− tq +G(q))− 2)−G(q − 1).
(6.28)

From (6.27) and (6.28), we obtain the following ∀t > u(q, 1):

− log µj,t(θ)

t
>
G̃(t)

t
(Kv(θ

?, θ)− ε)− log c

t
− log(1/γ(t))

t
, (6.29)

where G̃(t) = G(G−1(t − tq + G(q)) − 2), and c = e−(Kv(θ∗,θ)−ε)(tq−G(q−1))/η. Now

taking the limit inferior on both sides of (6.29) and using (6.5) yields:

lim inf
t→∞

− log µj,t(θ)

t
≥ α(Kv(θ

?, θ)− ε). (6.30)
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Finally, since the above inequality holds for any sample path ω ∈ Ω̄, and an arbitrarily

small ε, it follows that the assertion in (6.19) is true for every one-hop neighbor j of

agent v.

Now consider any agent i such that d(v, i) = 2. Clearly, there must exist some

j ∈ Nv such that i ∈ Nj. Following an identical line of reasoning as before, it is easy

to see that with Pθ∗-measure 1, µi,t(θ) decays exponentially at a rate that is at least

α times the rate at which µj,t(θ) decays to zero. From (6.30), the latter rate is at

least αKv(θ
∗, θ), and hence, the former is at least α2Kv(θ

∗, θ). This establishes the

claim of the lemma for all agents that are two-hops away from agent v. Since G is

connected, given any i ∈ V , there exists a path P(v, i) in G from v to i. One can

keep repeating the above argument along the path P(v, i) and proceed via induction

to complete the proof.

We are now in position to prove Theorem 6.4.1.

Proof (Theorem 6.4.1) Fix a θ ∈ Θ\{θ?}. Based on condition (i) of the Theorem,

S(θ?, θ) is non-empty, and based on condition (ii), there exists a path from each agent

v ∈ S(θ?, θ) to every agent i ∈ V \ {v}; Eq. (6.6) then follows from Lemma 6.9.2.

By definition of a source set, Kv(θ
?, θ) > 0,∀v ∈ S(θ?, θ); Eq. (6.6) then implies

limt→∞ µi,t(θ) = 0 a.s., ∀i ∈ V .

Proof (Proposition 6.4.1) Let the set Ω̄ have the same meaning as in Lemma

6.9.2. Fix any ω ∈ Ω̄, and note that since the conditions of Theorem 6.4.1 are

met, µi,t(θ
∗) → 1 on ω,∀i ∈ V . We prove the first claim of the proposition via

contradiction. Accordingly, suppose the claim does not hold. Since there are only

finitely many agents, this implies the existence of some i ∈ V and some j ∈ Ni, such

that i broadcasts its belief on θ∗ to j infinitely often, i.e., there exists a sub-sequence

{tpk} of {tk} at which the event-condition (6.4) gets satisfied for θ∗. From (6.4),

µi,tpk (θ∗) < γkµi,tp0 (θ∗),∀k ∈ N+, where γ , γ(tp0). This implies limk→∞ µi,tpk (θ∗) =

0, contradicting the fact that on ω, limt→∞ µi,t(θ
∗) = 1.
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For establishing the second claim, fix ω ∈ Ω̄, θ 6= θ∗, and i /∈ S(θ∗, θ). Since

i /∈ S(θ∗, θ), there exists t̃1 <∞ and η̄ > 0, such that πi,t(θ) ≥ η̄,∀t ≥ t̃1. This follows

from the fact that since θ is observationally equivalent to θ∗ for agent i, the claim

regarding πi,t(θ
∗) in Eq. (6.15) applies identically to πi,t(θ). Note also that since the

conditions of Theorem 6.4.1 are met, µi,t(θ)→ 0 on ω. From (6.1), µ̄i,t(θ)→ 0 as well.

Thus, there must exist some t̃2 <∞ such that min{µ̄i,t(θ), πi,t+1(θ)} = µ̄i,t(θ),∀t ≥ t̃2.

Let t̃ = max{t̃1, t̃2}. Consider any tk ∈ I, tk > t̃. We claim:

µi,t(θ) ≥ µ̄i,tk(θ),∀t ∈ [tk + 1, tk+1], and (6.31)

µ̄i,t(θ) ≥ µ̄i,tk(θ),∀t ∈ [tk, tk+1). (6.32)

To see why the above inequalities hold, consider the update of µi,tk+1(θ) based on (6.3).

Since tk > t̃2, we have min{µ̄i,tk(θ), πi,tk+1(θ)} = µ̄i,tk(θ). Noting that the denomina-

tor of the fraction on the R.H.S. of (6.3) is at most 1, we obtain: µi,tk+1(θ) ≥ µ̄i,tk(θ). If

tk+1 = tk+1, then the claim follows. Else, if tk+1 < tk+1, then since no communication

occurs at tk+1, we have from (6.1) that µ̄i,tk+1(θ) = min{µ̄i,tk(θ), µi,tk+1(θ)} ≥ µ̄i,tk(θ).

We can keep repeating the above argument for each t ∈ [tk + 1, tk+1] to establish the

claim. In words, inequalities (6.31) and (6.32) reveal that agent i cannot lower its

belief on the false hypothesis θ between two consecutive event-monitoring time-steps

when it does not hear from any neighbor. We will make use of this fact repeatedly

during the remainder of the proof. Let tp0 > t̃ be the first time-step in I to the right

of t̃. Now consider the following sequence, where k ∈ N:

tpk+1
= inf{t ∈ I : t > tpk , µ̄i,t(θ) < µ̄i,t−1(θ)}. (6.33)

The above sequence represents those event-monitoring time-steps at which µ̄i,t(θ)

decreases. We first argue that {tpk} is well-defined, i.e., each term in the sequence

is finite. If not, then based on (6.32), this would mean that µ̄i,t(θ) remains bounded

away from 0, contradicting the fact that µ̄i,t(θ) → 0 on ω. Next, for each k ∈ N+,

let jpk ∈ argminj∈Ni,tpk (θ)∪{i} µj,tpk (θ). We claim that i 6= jpk . To see why this is true,

suppose, if possible, i = jpk . Then, based on the definition of tpk , we would have
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µ̄i,tpk (θ) = µi,tpk (θ) < µ̄i,tpk−1(θ). However, as tpk > t̃2, we have from (6.3) that

µi,tpk (θ) ≥ µ̄i,tpk−1(θ), leading to the desired contradiction. In the final step of the

proof, we claim that i does not broadcast its belief on θ to jpk over [tpk + 1, tpk+1
].

To establish this claim, we start by noting that based on the definitions of jpk and

tpk , µ̄i,tpk (θ) = µjpk ,tpk (θ). Let us first consider the case when there are no intermediate

event-monitoring time-steps in (tpk , tpk+1
), i.e., tpk and tpk+1

are consecutive terms in

I. Then, at tpk+1
, µ̂jpk i,tpk+1

(θ) = µjpk ,tpk (θ), since no communication occurs over

(tpk , tpk+1
). Moreover, using (6.31), µi,tpk+1

(θ) ≥ µ̄i,tpk (θ) = µjpk ,tpk (θ). Thus, the

event condition (6.4) gets violated at tpk+1
, and i does not broadcast its belief on θ

to jpk . Next, consider the scenario when there is exactly one event-monitoring time-

step - say t̄ ∈ I - in the interval (tpk , tpk+1
). Since tpk and t̄ are now consecutive

terms in I, the fact that 1ijpk ,t̄(θ) 6= 1 follows from exactly the same reasoning as

earlier. We argue that 1jpk i,t̄(θ) 6= 1 as well. To see this, suppose that jpk does in

fact broadcast µjpk ,t̄(θ) to i at t̄. For this to happen, the event condition (6.4) entails:

µjpk ,t̄(θ) < γ(t̄)µjpk ,tpk (θ) = γ(t̄)µ̄i,tpk (θ) ≤ µ̄i,tpk (θ). Since µ̄i,t̄−1(θ) ≥ µ̄i,tpk (θ) from

(6.32), 1jpk i,t̄(θ) = 1 would then imply that µ̄i,t̄(θ) < µ̄i,t̄−1(θ), violating the fact that

t̄ < tpk+1
. The above reasoning suggests that µ̂jpk i,t(θ) = µjpk ,tpk (θ),∀t ∈ (tpk , tpk+1

].

Moreover, since µ̄i,t(θ) does not decrease at t̄ (as t̄ < tpk+1
), we have from (6.31)

that µi,t(θ) ≥ µ̄i,tpk (θ) = µjpk ,tpk (θ),∀t ∈ (tpk , tpk+1
]. It follows from the preceding

discussion that (6.4) gets violated at tpk+1
, and hence 1ijpk ,tpk+1

(θ) 6= 1. The above

arguments readily carry over to the case when there are an arbitrary number of

event-monitoring time-steps in the interval (tpk , tpk+1
). Thus, we omit such details.

We conclude that over each interval of the form (tpk , tpk+1
], k ∈ N+, there exists a

neighbor jpk ∈ Ni to which agent i does not broadcast its belief on θ. We can obtain

one such tp1 for each i /∈ S(θ∗, θ), and take the maximum of such time-steps to obtain

T2(ω).

Proof (Proposition 6.4.2) Let us fix θ 6= θ∗, and partition the set of agents V\{vθ}

based on their distances from vθ. Accordingly, we use Lq(θ) to represent level-q agents

that are at distance q from vθ, where q ∈ N+. Let the agent(s) that are farthest from
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vθ be at level q̄. Now consider any agent i ∈ Lq̄(θ). Based on the conditions of the

proposition, note that i /∈ S(θ∗, θ), and the only neighbor of i is its parent in the tree

rooted at vθ, denoted by pi(θ). Thus, claim (ii) of Proposition 6.4.1 applies to agent

i, implying that agent i stops broadcasting its belief on θ to pi(θ) eventually almost

surely. Next, consider an agent j ∈ Lq̄−1(θ). We have already argued that after a

finite number of time-steps, j will stop hearing broadcasts about θ from its children

in level q̄. Thus, for large enough k, Nj,tk(θ) can only comprise of pj(θ), namely the

parent of agent j in level q̄ − 2. In particular, given that j /∈ S(θ∗, θ), the decrease

in µ̄j,t(θ) at time-steps defined by (6.33) can only be caused by pj(θ). It then readily

follows from the proof of Proposition 6.4.1 that j will stop broadcasting µj,t(θ) to

pj(θ) eventually almost surely. To complete the proof, we can keep repeating the

above argument till we reach level 1.

Proof (Theorem 6.4.3) The proof of this result is similar in spirit to that of The-

orem 6.4.1. Hence, we only sketch the essential details. We begin by noting that the

claims in Lemma 6.9.1 hold under the conditions of the theorem - this can be easily

verified. Let Ω̄ have the same meaning as in Lemma 6.9.2. Fix ω ∈ Ω̄ and an arbitrar-

ily small ε > 0. Since Pθ∗(Ω̄) = 1, to prove the result, it suffices to argue that for each

false hypothesis θ 6= θ∗, ∃T (ω, θ, ε) such that on ω, µi,t(θ) < ε,∀t ≥ T (ω, θ, ε),∀i ∈ V .

Recall that based on Lemma 6.9.1, there exists a time-step t′(ω) <∞, and a constant

η(ω) > 0, such that on ω, πi,t(θ
?) ≥ η(ω), µ̄i,t(θ

?) ≥ η(ω),∀t ≥ t′(ω), ∀i ∈ V . Set

ε̄(ω) = min{ε, γη(ω)}. Also, from Lemma 6.9.1, we know that there exists t̄ such

that µi,t(θ) < ε̄|V|,∀t ≥ t̄, ∀i ∈ S(θ∗, θ).15 Let t̃0 = max{t′, t̄}. Since the union graph

over [t̃0,∞) is rooted at S(θ∗, θ), there exists a set F1(θ) ∈ V \S(θ∗, θ) of agents such

that each agent in F1(θ) has at least one neighbor in S(θ∗, θ) in the union graph.

Accordingly, consider any j ∈ F1(θ), and suppose j ∈ Ni(τ), for some i ∈ S(θ∗, θ),

15As before, we have suppressed dependence of various quantities on ω, θ, and ε, since they can be
inferred from context.
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and some τ ≥ t̃0. The cases 1ij,τ (θ) = 1 and 1ij,τ (θ) 6= 1 can be analyzed exactly as

in the proof of Lemma 6.9.2 to yield:

µj,t(θ) <
ε̄|V|

ηγ
≤ ε̄(|V|−1),∀t > τ, (6.34)

where the last inequality follows by noting that ε̄ ≤ ηγ. Let t̃1 > t̃0 be the first time-

step by which every agent in F1(θ) has had at least one neighbor in S(θ∗, θ). Then,

based on the above reasoning, µj,t(θ) < ε̄(|V|−1), ∀t > t̃1, ∀j ∈ F1(θ). If V \ {S(θ∗, θ)∪

F1(θ)} = ∅, then we are done. Else, given the fact that the union graph over [t̃1,∞)

is rooted at S(θ∗, θ), there must exist a non-empty set F2(θ) such that each agent

in F2(θ) has at least one neighbor from the set S(θ∗, θ) ∪ F1(θ) in the union graph.

Reasoning as before, one can conclude that there exists a time-step t̃2 > t̃1 such that

µj,t(θ) < ε̄(|V|−2),∀t > t̃2,∀j ∈ F2(θ). To complete the proof, we can keep repeating

the above construction till we exhaust the vertex set V .

6.9.2 Proof of Theorem 6.6.1

We begin with the following lemma.

Lemma 6.9.3 Suppose the conditions of Theorem 6.6.1 are satisfied. Then, asser-

tions (i)-(iii) in Lemma 6.9.1 hold when each agent employs Algorithm 6.

Proof The proof of this lemma mirrors that of Lemma 6.9.1. The key point is that

for any agent i ∈ V , qi,t(θ
∗) 6= 0 almost surely, where t ∈ N. To see this, observe from

(6.9) that whenever an agent i broadcasts about θ∗, we have qi,t(θ
∗) ≥ µi,t(θ

∗). Hence,

at such a time-step t, qi,t(θ
∗) = 0 =⇒ µi,t(θ

∗) = 0. Using the same arguments as in

Lemma 6.9.1, one can argue that this is almost surely impossible.

Equipped with the above lemma, we now proceed to prove Theorem 6.6.1.

Proof (Theorem 6.6.1) In view of Lemma 6.9.3, we know that there exists a set

Ω̄ ⊆ Ω of Pθ∗-measure 1 for which assertions (ii) and (iii) of Lemma 6.9.1 hold.

Consider any false hypothesis θ 6= θ∗, fix a sample path ω ∈ Ω̄, and an agent v ∈
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S(θ?, θ). Following the same reasoning as in the proof of Lemma 6.9.2, there exists

a time-step t̄, such that for all t ≥ t̄, the following are true on ω: (i) πi,t(θ
?) ≥

η(ω), µ̄i,t(θ
?) ≥ η(ω),∀i ∈ V ; and (ii) for a fixed ε > 0, µv,t(θ) < e−(Kv(θ?,θ)−ε)t. We

will complete the proof in two steps. In Step 1, we will establish that the quantization

range Rv,t(θ) = [0, qv,t(θ)] contracts exponentially fast. In Step 2, we will analyze the

implications of the above phenomenon on the beliefs of the remaining agents on θ. In

what follows, we elaborate on these steps.

Step 1. Consider any time-step t + 1 > t̄. At this time-step, there are two

possibilities. Either µv,t+1(θ) ∈ [0, qv,t(θ)), in which case we have from (6.9) that:

qv,t+1(θ) ≤ 1

2B(θ)
qv,t(θ) + µv,t+1(θ). (6.35)

Else, we have µv,t+1(θ) ≥ qv,t(θ) and, based on our encoding strategy, node v sets

qv,t+1(θ) = qv,t(θ). Clearly, the bound on qv,t+1(θ) in (6.35) applies to both the

cases we discussed above. To proceed, let a = 1/2B(θ), K̃ = Kv(θ
∗, θ) − ε, and

ρ = max{a, e−K̃}. Rolling out the inequality (6.35) over τ ≥ 1 time-steps starting

from t̄ yields:

qv,t̄+τ (θ) ≤ aτ

(
qv,t̄(θ) +

τ−1∑
l=0

µv,t̄+l+1

al+1

)
(a)

≤ aτ

(
qv,t̄(θ) +

e−K̃(t̄+1)

a

τ−1∑
l=0

1

(aeK̃)
l

)
(b)

≤ aτ +
e−K̃τ − aτ

e−K̃ − a
(c)

≤
(

1 +
1

|e−K̃ − a|

)
ρτ .

(6.36)

In the above inequalities, (a) follows by noting that µv,t̄+l+1 decays exponentially

∀l ≥ 0 based on the definition of t̄. For (b), we simplify the preceding inequality

using the facts that qv,t̄(θ) ≤ 1, and e−K̃(t̄+1) ≤ 1 as K̃ > 0; the latter is true since

v ∈ S(θ∗, θ). Finally, (c) follows from straightforward algebra. We thus obtain:

qv,t(θ) ≤
1

ρt̄

(
1 +

1

|e−K̃ − a|

)
ρt,∀t ≥ t̄+ 1. (6.37)
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Since B(θ) ≥ 1, we have a < 1. Moreover, as K̃ > 0, it follows that ρ < 1. In view of

(6.37), we thus observe that qv,t(θ) eventually decays to 0 exponentially fast at the

rate ρ.

Step 2. Consider any neighbor j of agent v. Let us now make two simple

observations, each of which follow easily from the rules of Algorithm 6. First, given

that µv,1(θ) < 1 = qv,0(θ), the condition in line 4 of Algorithm 6 will pass at t = 1,

and hence agent v will broadcast qv,1(θ) to agent j at time-step t = 1. Second, at

each following time-step t ≥ 1, the value of qv,t(θ) held by agent v is consistent with

that held by agent j, irrespective of whether v broadcasts to j at time t about θ, or

not. We thus have that ∀t ≥ t̄+ 2:

µj,t(θ)
(a)

≤ µ̄j,t−1(θ)

η
(b)

≤ qv,t−1(θ)

η
(c)

≤ 1

ηρt̄+1

(
1 +

1

|e−K̃ − a|

)
ρt,

(6.38)

where (a) follows from (6.3) and the fact that all beliefs on θ∗ are bounded below by η

for t ≥ t̄; (b) follows from (6.10); and (c) follows from (6.37). Taking the natural log

on both sides of (6.38), dividing throughout by t, and then taking the limit inferior

on both sides of the resulting inequality yields:

lim inf
t→∞

− log µj,t(θ)

t
≥ log

1

ρ
. (6.39)

Now let us consider two cases. First, suppose B(θ) log 2 ≥ Kv(θ
∗, θ). From (6.39), it

is then easy to see that log 1/ρ ≥ K̃ = Kv(θ
∗, θ)− ε, where ε can be made arbitrarily

small. Hence, in this case, log 1/ρ ≥ Kv(θ
∗, θ). Next, suppose B(θ) log 2 < Kv(θ

∗, θ).

Then, there must exist ε > 0 such that B(θ) log 2 < Kv(θ
∗, θ) − ε. With such a

choice of ε, we can set K̃ = Kv(θ
∗, θ)− ε and conduct the above analysis to arrive at

log 1/ρ ≥ B(θ) log 2. Hence, we conclude:

lim inf
t→∞

− log µj,t(θ)

t
≥ min{B(θ) log 2, Kv(θ

∗, θ)}. (6.40)
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Consider any neighbor l of agent j, i.e., a two-hop neighbor of agent v. We can

analyze the decay of qj,t(θ) and µl,t(θ) exactly as we did for qv,t(θ) and µj,t(θ) to

conclude that µl,t(θ) also decays exponentially at a rate that is lower bounded by

Hv(θ
∗, θ) = min{B(θ) log 2, Kv(θ

∗, θ)}; this is not too hard to verify and hence we

omit details. Repeating this argument reveals that every agent reachable from v can

reject θ at a rate that is at least Hv(θ
∗, θ). Since G is connected, the above conclusion

applies to every agent.

An analysis identical to the one above can be carried out for each v ∈ S(θ∗, θ).

The proof can then be completed following the same arguments as in Theorem 6.4.1.
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7. SUMMARY AND FUTURE DIRECTIONS

In this thesis, we focused on understanding how to solve estimation and inference

problems over networks with distributed data. In the first part of the thesis, we made

the following contributions to the problem of distributed state estimation.

• In Chapter 2, we introduced a new class of distributed observers that guaran-

tee asymptotic reconstruction of the state under minimal system- and graph-

theoretic assumptions. We also studied the problem of designing distributed

functional observers.

• In Chapter 3, we identified (separate) necessary and sufficient conditions for ad-

dressing the distributed state estimation problem subject to worst-case Byzan-

tine adversarial attacks on certain agents.

• In Chapter 4, we extended our framework to accommodate a broad class of

time-varying graphs. In particular, we proved that our approach guarantees ex-

ponential convergence at any desired rate, under remarkably mild assumptions

on the sequence of time-varying graphs.

In the second part of the thesis, we studied the problem of statistical inference

over a network, and contributed in the following ways.

• In Chapter 5, we introduced a new distributed learning rule based on a min-

protocol. We established that it guarantees exponentially fast convergence with

probability 1 at a network-independent rate that strictly improves upon the

rates existing in the literature. We then developed a simple and efficient variant

of this rule that can account for the presence of misbehaving entities.
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• Finally, in Chapter 6, we explored the theme of communication-efficiency. To

reduce the number of communication rounds, we introduced an event-triggered

learning algorithm, and characterized the trade-offs between sparse communi-

cation and the learning rate. To tackle the aspect of finite channel bandwidth,

we drew on ideas from adaptive quantization to develop a quantized learning

rule; we showed that this rule guarantees exponential convergence almost surely

even when just 1 bit is used to encode each hypothesis.

Let us now briefly outline certain problems that are a subject of both ongoing and

future research.

• Distributed Observer Design beyond LTI dynamics: In our develop-

ments pertaining to distributed state estimation, the standing assumption has

been that the state dynamics evolves based on an LTI model. Working under

this standing assumption on the dynamical model, we were able to essentially

establish that a distributed observer can match almost all the properties of its

centralized counterpart. We then generalized our results to account for time-

varying graphs and worst-case adversarial attacks on the network. While these

developments provide a fairly complete theory for distributed state estimation of

LTI systems, generalizations along the dynamical system model remain open.

In particular, do analogous ideas and results carry over to certain classes of

nonlinear systems? What about switched linear systems? While there are some

recent results [179,180] on the design of distributed observers for certain classes

of nonlinear systems, there remains much to explore along these lines.

Coming back to the realm of LTI systems, one can also study dynamics of the

form x[k + 1] = Ax[k] + Bu[k], where u[k] is an unknown input. Suppose the

pair (A,C) is strongly-detectable, where C is the collective observation matrix.

Furthermore, suppose the communication graph G is strongly-connected. Under

these assumptions, is it true that one can construct a distributed unknown
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input and state observer? To the best of our knowledge, this question remains

completely unexplored.

In addition to the above problems, one can also study the effect of a time-varying

measurement model at each node. Such an abstraction is particularly relevant in

the context of environmental monitoring using mobile sensors. Since a mobile

sensor persistently moves around between sensing locations, its measurement

model becomes a function of its motion trajectory. As a result, even if the

underlying state dynamics evolves based on an LTI model, the measurement

model for each sensor is time-varying. Under such circumstances, how does one

design a patrol that allows each sensor to estimate the state despite the issue of

intermittent observations? This is essentially a switched system observer design

problem. While we have conducted preliminary investigations along this line

in [117,181], there are various questions that remain unanswered.

• Closing the Loop: The investigations in this thesis have been directed towards

the problem of estimating/inferring an unknown quantity with distributed data.

A natural follow-up problem would be to use the estimate of the state to control

some process of interest. For instance, suppose the task is to jointly estimate

and control the state of an LTI system. Can this be done if the state is jointly

detectable and stabilizable w.r.t. the measurements and inputs of all the nodes?

Note that there may be circumstances where the actuator nodes in the network

are separated from the sensing nodes that acquire measurements. Given this

predicament, can one identify the exact graph conditions that lead to a solution

to this problem? A preliminary result on this topic can be found here [182].

• Sequential Decision-Making in Multi-Agent Systems: As a generaliza-

tion of the above point, one can ask: How should an agent act based on the

information it has acquired over time? Depending upon the context, various

formulations can be conceived. For instance, suppose an individual wishes to

determine the best restaurant in a city. Each visit to a restaurant reveals a
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noisy estimate of the restaurant’s quality. In the language of online learning,

the goal of the individual is to minimize regret by carefully trading off between

exploration and exploitation. This is of course a very well studied problem in

the multi-armed bandits literature. Now suppose the individual in the previous

example can benefit from side observations made by her friends in the city. Can

she leverage such additional information to achieve a lower regret than when

she had to act alone? If so, what should be her strategy of data-aggregation? If

each query made to a friend incurs a cost, how would her strategy change? More

generally, how should a network of agents interact to resolve the exploration-

exploitation dilemma inherent in online learning problems of the form stated

above? Some recent results on this topic can be found in [183–185].

• Communication-Efficient Distributed Learning and Control: Given a

task that needs to be accomplished in a distributed manner (e.g., control, esti-

mation, optimization, or learning), how often should an agent interact with its

neighbors to solve the task to a desired level of accuracy? During each interac-

tion, how much information does an agent need to transmit? These questions are

becoming increasingly relevant in the context of edge computing, where limited

channel bandwidth and low-power IoT devices (mobile phones, wearable de-

vices etc.) dictate the need for novel strategies to mitigate the communication-

bottleneck. In Chapter 6, we drew on ideas from event-triggered control and

adaptive quantization to reduce the number of communication rounds, and con-

trol the size of the messages being transmitted, in the context of distributed

hypothesis testing. One could naturally ask similar questions for other problems

on networks. For instance, let us revisit the standard distributed state estima-

tion formulation, where each edge in the underlying graph is now modeled as a

discrete-time, noiseless, digital channel that can support a finite number of bits.

Even for this simple bit-constrained scenario, the issue of finding the minimal

capacity of each channel to solve the distributed estimation problem remains

open. Thus, while we have a fair understanding of control/estimation under
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communication constraints for centralized settings (e.g., stabilizing a plant over

a bandwidth-limited channel [171]), questions of the form posed above remain

largely unexplored, and offer a ripe avenue for future research at the intersection

of network information theory, control systems, and learning theory.
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[148] A. Nedić, A. Olshevsky, and C. A. Uribe, “Distributed learning for cooperative
inference,” arXiv preprint arXiv:1704.02718, 2017.

[149] T. M. Cover and J. A. Thomas, Elements of Information theory. John Wiley
& Sons, 2012.

[150] P. Molavi, A. Jadbabaie, K. R. Rad, and A. Tahbaz-Salehi, “Reaching consen-
sus with increasing information,” IEEE Journal of Selected Topics in Signal
Processing, vol. 7, no. 2, pp. 358–369, 2013.

[151] D. Acemoglu, A. Ozdaglar, and A. ParandehGheibi, “Spread of (mis) informa-
tion in social networks,” Games and Economic Behavior, vol. 70, no. 2, pp.
194–227, 2010.

[152] N. Vaidya, “Matrix representation of iterative approximate Byzantine consensus
in directed graphs,” arXiv preprint arXiv:1203.1888, 2012.

[153] W. Mulzer and D. Werner, “Approximating Tverberg points in linear time for
any fixed dimension,” Discrete & Computational Geometry, vol. 50, no. 2, pp.
520–535, 2013.

[154] H. Royden and P. Fitzpatrick, Real Analysis. Prentice Hall, 2010.

[155] W. Hoeffding, “Probability inequalities for sums of bounded random variables,”
in The Collected Works of Wassily Hoeffding. Springer, 1994, pp. 409–426.

[156] C. A. Uribe, J. Z. Hare, L. Kaplan, and A. Jadbabaie, “Non-Bayesian so-
cial learning with uncertain models over time-varying directed graphs,” arXiv
preprint arXiv:1909.04255, 2019.

[157] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,”
IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1680–1685, 2007.

[158] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-
triggered and self-triggered control,” in Proceedings of the Conference on Deci-
sion and Control. IEEE, 2012, pp. 3270–3285.

[159] A. Mitra, J. A. Richards, and S. Sundaram, “A communication-efficient algo-
rithm for exponentially fast non-Bayesian learning in networks,” in Proceedings
of the Conference on Decision and Control, 2019, pp. 8347–8352.

[160] A. Mitra, S. Bagchi, and S. Sundaram, “Event-triggered distributed inference,”
arXiv preprint arXiv:2004.01302, 2020.



239

[161] S. Shahrampour, M. A. Rahimian, and A. Jadbabaie, “Switching to learn,” in
Proceedings of the American Control Conference, 2015, pp. 2918–2923.

[162] J. Z. Hare, C. A. Uribe, L. M. Kaplan, and A. Jadbabaie, “Communication
constrained learning with uncertain models,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, 2020, pp.
8609–8613.

[163] A. Olshevsky, I. C. Paschalidis, and A. Spiridonoff, “Fully asynchronous push-
sum with growing intercommunication intervals,” in Proceedings of the Ameri-
can Control Conference, 2018, pp. 591–596.

[164] K. Tsianos, S. Lawlor, and M. G. Rabbat, “Communication/computation trade-
offs in consensus-based distributed optimization,” in Advances in Neural Infor-
mation Processing systems, 2012, pp. 1943–1951.

[165] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms for decen-
tralized and stochastic optimization,” Mathematical Programming, pp. 1–48,
2017.

[166] A. K. Sahu, D. Jakovetic, and S. Kar, “Credo: A communication-efficient dis-
tributed estimation algorithm,” in Proceedings of the IEEE International Sym-
posium on Information Theory, 2018, pp. 516–520.

[167] C. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication and
control of networked systems for multi-agent consensus,” Automatica, vol. 105,
pp. 1–27, 2019.

[168] R. Ahlswede and I. Csiszár, “Hypothesis testing with communication con-
straints,” IEEE Transactions on Information Theory, vol. 32, no. 4, pp. 533–
542, 1986.

[169] M. Longo, T. D. Lookabaugh, and R. M. Gray, “Quantization for decentralized
hypothesis testing under communication constraints,” IEEE Transactions on
Information Theory, vol. 36, no. 2, pp. 241–255, 1990.

[170] S. Amari et al., “Statistical inference under multiterminal data compression,”
IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2300–2324, 1998.

[171] S. Tatikonda and S. Mitter, “Control under communication constraints,” IEEE
Transactions on Automatic Control, vol. 49, no. 7, pp. 1056–1068, 2004.

[172] T. T. Doan, S. T. Maguluri, and J. Romberg, “Fast convergence rates of
distributed subgradient methods with adaptive quantization,” arXiv preprint
arXiv:1810.13245, 2018.

[173] C. De Persis and P. Frasca, “Robust self-triggered coordination with ternary
controllers,” IEEE Transactions on Automatic Control, vol. 58, no. 12, pp.
3024–3038, 2013.

[174] W. H. Heemels, M. Donkers, and A. R. Teel, “Periodic event-triggered control
for linear systems,” IEEE Transactions on Automatic Control, vol. 58, no. 4,
pp. 847–861, 2012.



240

[175] L. Moreau, “Stability of multiagent systems with time-dependent communi-
cation links,” IEEE Transactions on Automatic Control, vol. 50, no. 2, pp.
169–182, 2005.

[176] J. Li, G. Chen, Z. Wu, and X. He, “Distributed subgradient method for multi-
agent optimization with quantized communication,” Mathematical Methods in
the Applied Sciences, vol. 40, no. 4, pp. 1201–1213, 2017.
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