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Abstract— We study the problem of designing distributed
functional observers for LTI systems. Specifically, we consider
a setting consisting of a state vector that evolves over time
according to a dynamical process. A set of nodes distributed
over a communication network wish to collaboratively estimate
certain functions of the state. We first show that classical
existence conditions for the design of centralized functional
observers do not directly translate to the distributed setting,
due to the coupling that exists between the dynamics of the
functions of interest and the diverse measurements at the
various nodes. Accordingly, we design transformations that
reveal such couplings and identify portions of the corresponding
dynamics that are locally detectable at each sensor node.
We provide sufficient conditions on the network, along with
state estimate update and exchange rules for each node, that
guarantee asymptotic reconstruction of the functions at each
sensor node.

I. INTRODUCTION

Consider the discrete-time linear time-invariant dynamical
system

x[k + 1] = Ax[k], (1)

where k ∈ N is the discrete-time index, x[k] ∈ Rn is the
state vector and A ∈ Rn×n is the system matrix. The state
of the system is monitored by a network of N sensors,
each of which receives a partial measurement of the state
at every time-step. Specifically, the i-th sensor has access to
a measurement of the state, given by

yi[k] = Cix[k], (2)

where yi[k] ∈ Rri and Ci ∈ Rri×n. We use y[k] =[
yT
1 [k] · · · yT

N [k]
]T

to represent the collective measure-
ment vector, and C =

[
CT

1 · · · CT
N

]T
to denote the

collection of the sensor observation matrices. These sensors
are represented as nodes of an underlying directed commu-
nication graph which governs the information flow between
the sensors. Each node is capable of exchanging information
with its neighbors and performing computational tasks. The
goal of each node is to estimate ψ[k], where

ψ[k] = Lx[k]. (3)

Here, L ∈ Rr×n is a full row-rank matrix (without loss
of generality); hence ψ[k] represents r linearly independent
functions of the state.1 While there is a rich body of
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1When L is the identity matrix (or more generally a square non-singular
matrix), the corresponding problem becomes the well-explored distributed
state estimation problem. For work on distributed Kalman filtering, see
[1]–[3], and for literature on distributed state observers refer to [4]–[8],
and the references therein. The problem studied in this paper is in fact a
generalization of the distributed state estimation problem.

literature that looks at the centralized functional observer
design problem (see [9], [10]), we are unaware of any work
that investigates the distributed counterpart based on the
generic model considered in this paper. In [11], the authors
develop a partially distributed functional observer scheme for
coupled interconnected LTI systems where each sub-system
maintains an observer for estimating functions of the state
corresponding to that particular sub-system. However, the
model and problem formulation in [11] differ from the ones
considered in this paper. A key point of difference is that in
[11], the underlying communication graph does not play a
role in the design strategy, whereas our methodology focuses
on analyzing the relationship between the system dynamics
and the network topology.

The main contribution of this paper is a distributed al-
gorithm that guarantees asymptotic reconstruction of ψ[k]
at each sensor node under certain conditions on the system
dynamics and network topology.

II. SYSTEM MODEL

A. Notation

A directed graph is denoted by G = (V, E), where
V = {1, · · · , N} is the set of nodes and E ⊆ V × V
represents the edges. An edge from node j to node i, denoted
by (j, i), implies that node j can transmit information to
node i. The neighborhood of the i-th node is defined as
Ni , {i}∪{j | (j, i) ∈ E}. The notation |V| is used to denote
the cardinality of a set V . For a set S = {s1, · · · , sp} ⊆
{1, · · · , N}, and a matrix C =

[
CT

1 · · · CT
N

]T
, we

define CS ,
[
CT

s1 · · · CT
sp

]T
. Given a matrix A, we use

R(A) to denote the row-space of A, sp(A) to denote the
spectrum of A and A† to refer to its Moore Penrose inverse.
We use Ir to indicate an identity matrix of dimension r× r.

B. Problem Formulation

With ψ̂i[k] representing the estimate of ψ[k] maintained
by node i, the problem studied in this paper can be formally
stated as follows.

Problem 1 (Distributed Functional Estimation Problem).
Given an LTI system (1), a linear measurement model (2),
the functions of interest (3), and a time-invariant communi-
cation graph G, design a distributed algorithm that achieves
limk→∞ ||ψ̂i[k]−ψ[k]|| = 0,∀i ∈ {1, · · · , N}.

Remark 1. As long the system is globally detectable, i.e., the
pair (A,C) is detectable, and the communication graph G
is strongly connected, a trivial way to solve Problem 1 is to
reconstruct the entire state x[k] at every sensor node based
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Fig. 1. Example for illustrating Proposition 1.

on any of the existing distributed state estimation techniques
in [5]–[8]. Our goal in this paper will be to design observers
that are in general of order2 smaller than the dimension of
the state x[k] (see Remark 4 for further details).

A distributed algorithm that solves Problem 1 will be
called a distributed functional observer. Note that in general
it may not be possible for a given node i to estimate
ψ[k] by solely relying on its own measurements,3 thereby
dictating the need to exchange information with its neigh-
bors. However, this exchange of information is restricted
by the underlying communication graph G. In addition to
the aforementioned challenges, in the subsequent section
we show that existing results/techniques for the centralized
version of the problem are not directly applicable to the
problem under consideration.

III. MOTIVATION

The purpose of this section is to illustrate that classical
existence conditions for the design of centralized functional
observers (of a given order) do not generally hold in a
distributed setting, and in the process, motivate our present
work. To this end, we first recall the following necessary
and sufficient conditions set forth by Darouach [9] for the
existence of a centralized functional observer of order r,
where r = rank L:
(i)

rank


LA
CA
C
L

 = rank

CA
C
L

 , (4)

(ii)

rank

sL− LA
CA
C

 = rank

CA
C
L

 , ∀s ∈ C, |s| ≥ 1. (5)

Next, consider the following system which is monitored by
a network of nodes as depicted by Figure 1:[

x(1)[k + 1]
x(2)[k + 1]

]
︸ ︷︷ ︸

x[k+1]

=

[
1
2 2
0 3

]
︸ ︷︷ ︸

A

[
x(1)[k]
x(2)[k]

]
︸ ︷︷ ︸

x[k]

,

L =
[
1 0

]
,C1 =

[
0 1

]
,C2 = C3 = 0.

(6)

The objective is to estimate x(1)[k] at each of the three

2By the order of an observer at a given sensor node, we refer to the
dimension of the portion of the state that is dynamically estimated at that
node, i.e., the portion that is not obtained directly from the measurements
of the node under consideration.

3This is precisely the case when ψ[k] is a linear function of some states
that are undetectable with respect to the measurements of node i; for related
notions of ‘Functional Observability’, see [12], [13].

nodes. It is easy to verify that the necessary and sufficient
conditions (equations (4) and (5)) for the existence of a
centralized 1st order functional observer are satisfied by the
system (6) with C =

[
CT

1 CT
2 CT

3

]T
. At this point,

it is natural to ask whether it is possible for each node
to estimate x(1)[k] via 1st order estimators. To formally
answer this question, we need to impart some structure to
the distributed observers under consideration. To this end,
consider distributed observers of the form4

x̂
(1)
i [k + 1] = αi

∑
j∈Ni

wij x̂
(1)
j [k] + βi

∑
j∈Ni

yj [k], (7)

where x̂(1)i [k] is the estimate of x(1)[k] maintained by node
i, and αi, βi, wij are free design parameters at node i. The
weights wij are non-negative and satisfy

∑
j∈Ni

wij = 1, i ∈
{1, 2, 3}. We then obtain the following straightforward result,
a proof of which is provided in [14].5

Proposition 1. For the system given by (6), and the corre-
sponding network depicted by Figure 1, it is impossible for
node 3 to estimate the function Lx[k] = x(1)[k] using a 1st
order observer that has structure given by (7).

To see why Darouach’s conditions do not generally hold
in a distributed setting, let us take a closer look at the
rank condition (4). We see that (4) implies the existence
of matrices M1,M2,M3 (not necessarily unique) such that
LA = M1L + M2C + M3CA. Thus, referring to (1), (2)
and (3), we have ψ[k+1] = M1ψ[k]+M2y[k]+M3y[k+1].
Since the dynamics of ψ[k] are coupled to the measurements
that are directly available in a centralized setting (and hence
require no estimation), it suffices to maintain a dynamic
estimator of order equal to the length of the vector ψ[k].

However, for the problem under consideration, since the
dynamics of ψ[k] are coupled with the measurement vector
y[k] that is no longer completely accessible at a single
node, a centralized functional observer design is no longer
applicable. In fact, it becomes necessary for the nodes to
maintain estimates of each others’ measurements in order to
estimate ψ[k].6 Building on this intuition, we introduce the
notion of ‘functional leader sets’ in the following section,
and investigate how the dynamics of the functions ψ[k] are
coupled to the measurements of such a set of nodes via an ap-
propriately designed similarity transformation. Prior to doing
so, we should point out that even if Darouach’s conditions
are not met, it is still possible to construct minimal order
centralized functional observers of order greater than r [10].
However, based on the discussion in this section, to isolate
the challenges introduced by the distributed setting, we focus
on tuples (A,C,L) that allow for the construction of r-

4The choice of this observer structure is inspired by the fact that standard
distributed state observers existing in literature are essentially of this form.

5For the sake of illustration, we considered the observer model given by
(7). Having said that, given the plant and measurement model (6), and the
network depicted by Figure 1, adding more free design parameters to the
observer structure will not change the result of Proposition 1.

6This is illustrated by the system considered in Proposition 1 where the
function of interest, namely x(1)[k], is coupled to the state measured by
node 1. Hence, nodes that are not immediate neighbors of node 1 (like node
3) need to maintain estimates of y1[k] in order to estimate x(1)[k].



th order centralized functional observers and additionally
possess certain extra structure (to be discussed later).

IV. FUNCTIONAL LEADER SETS

Before formally defining a functional leader set, we need
to first introduce some terminology. To this end, note that by
a row sub-matrix C̄S of CS , we imply that C̄S contains a
non-empty (not necessarily proper) subset of the rows of CS ,
i.e., R(C̄S) ⊆ R(CS). Consider the following definitions.

Definition 1 (Feasible Leader Set). A set of nodes S ⊆ V
is called a feasible leader set if there exists at least one
row sub-matrix C̄S of CS satisfying the following two
conditions:
(i)

rank


LA

C̄SA
L

C̄S

 = rank
[

L
C̄S

]
, (8)

(ii)

rank

s [ L
C̄S

]
−
[

L
C̄S

]
A

C̄S

 = rank
[

L
C̄S

]
, ∀s ∈ C, |s| ≥ 1. (9)

Definition 2 (Minimal Leader Set). A set S is called a
minimal leader set if S is a feasible leader set and no subset
of S is a feasible leader set. A feasible leader set S with
|S| = 1 is considered to be minimal by default.

Given a minimal leader set S, if there are several row sub-
matrices of CS that satisfy conditions (8) and (9), denote the
row sub-matrix that produces the lowest rank of

[
LT C̄T

S
]T

by CSmin
and the corresponding rank by rSmin

. Let the set
of all feasible leader sets be denoted by F and the set of all
minimal leader sets be denoted by M = {S(1), · · · ,S(l)},
where l = |M|. The tuples characterizing the minimal leader
sets are given by {(CS(1)

min
, rS(1)

min
), · · · , (CS(l)

min
, rS(l)

min
)}.

Definition 3 (Functional Leader Set). A set S(i) ∈ M is
referred to as a functional leader set if rS(i)

min
≤ rS(j)

min
∀j ∈

{1, · · · , l} \ {i}.
Thus, a functional leader set is a minimal leader set that

yields the lowest rank on the R.H.S. of equation (8) among
all minimal leader sets. Given any tuple (A,C,L) described
by (1), (2), (3), if F is non-empty, then it is easily seen
that M is also non-empty and hence we are guaranteed the
existence of at least one functional leader set. If there are
multiple functional leader sets, it suffices to pick any one for
our subsequent analysis since all such sets will essentially
lead to distributed functional observers of the same order.
Thus, if F is non-empty, we pick any functional leader set,
denote it by S?, and the tuple characterizing it by (C?, r?).
We refer to the nodes in S? as functional leader nodes.

Remark 2. Roughly speaking, it will soon be apparent that
any set of sensor nodes belonging to F (and hence M)
can effectively serve as ‘leaders’ in the consensus dynamics
for estimating the functions of interest, thereby justifying
the proposed terminology. Furthermore, if set S(i) ∈ M is

chosen as the leader set, then our design would result in
every node maintaining a distributed functional observer of
order rS(i)

min
. The definition of a functional leader set 7 is thus

motivated by the goal of obtaining the distributed functional
observer of minimal order among all feasible leader sets.

Before proceeding further, we illustrate some of the con-
cepts introduced in this section via the following model:

A =

0 2 0
3 0 0
0 0 5

 ,C1 =

[
0 1 0
0 0 1

]
,L =

[
1 0 0

]
. (10)

Clearly, S = {1} is a minimal leader set with C1 satis-
fying both the rank conditions (8) and (9). However, these
conditions are also satisfied by the row sub-matrix formed
by considering just the first row of C1. While considering
the entire C1 will lead to a distributed functional observer of
order 3, considering only its first row will lead to an observer
of order 2 using our design methodology. Given a minimal
leader set S, the foregoing discussion motivates the need to
check whether sub-matrices of CS satisfy the conditions (8)
and (9).8 With A and L as described in (10), suppose we had
C1 =

[
0 1 0

]
and C2 =

[
0 0 1

]
. Then, S = {1, 2}

would be a feasible (but not minimal) leader set, S = {1}
would be a minimal leader set and S = {2} would not be a
feasible leader set.

The following property of the functional leader set S? will
be critical in our subsequent design.

Lemma 1. Given a tuple (A,C,L) described by (1), (2) and
(3) such that F is non-empty, let the functional leader set
S? be characterized by the tuple (C?, r?) with p denoting
the number of rows of C?. Then, there exists a similarity
transformation matrix T that brings (A,C?) to the following
form:

Ā =

[
AD 0
AE AF

]
, C̄ =

[
CD 0

]
, (11)

where AD ∈ Rr?×r? , CD ∈ Rp×r? . Furthermore, the
following properties hold: (i) the state vector corresponding
to the matrix AD has the functions of interest ψ[k] as its first
r components, and a subset of measurements corresponding
to the matrix C? as the remaining r? − r components; and
(ii) the pair (AD,CD) is detectable.

Proof. By definition, since S? is a feasible leader set, the
rank conditions (8) and (9) are satisfied by C̄S? = C?.
In particular, based on the rank condition (8), it is easy
to see that R(

[
LT C?T

]T
) is AT -invariant. Define Σ ,[

LT C̃?
T
]T

, where C̃? contains all the linearly indepen-
dent rows of C? that are also linearly independent of the

7Given a tuple (A,C,L) described by (1), (2) and (3), the design of an
algorithm that finds a functional leader set S? (provided F is non-empty),
and the subsequent analysis of its complexity, are interesting avenues for
future research.

8Intuitively, we see that the state of interest, namely state 1, is coupled
only to the second state. Hence, the extra information about the third state
provided by the second row of C1 is irrelevant in the present context.
Based on this discussion, note that our approach ensures that the order
of the proposed distributed functional observer is in general smaller than
the dimension of the detectable subspace of the pair (A,C), where C
represents the collective observation matrix.



rows of L. Noting that rank Σ = r?, it follows that there
exists a matrix AD ∈ Rr?×r? such that

ΣA = ADΣ. (12)

Let us define a non-singular transformation matrix as T ,[
ΣT VT

]T
, where the rows of V ∈ R(n−r?)×n represent

an orthogonal basis for the null space of Σ. Using (12), we
then conclude that

TA =

[
ΣA
VA

]
=

[
ADΣ
VA

]
=

[[
AD 0

]
T

VAT−1T

]
. (13)

By partitioning the (n − r?) × n matrix VAT−1 as
VAT−1 =

[
AE AF

]
, where AE ∈ R(n−r?)×r? and

AF ∈ R(n−r?)×(n−r?), we further obtain

TA =

[
AD 0
AE AF

]
T. (14)

Next, note that R(C?) ⊆ R(Σ). Hence, there exists a matrix
CD ∈ Rp×r? such that

C? = CDΣ. (15)

Noting that ΣT−1 =
[
I 0

]
, and using (15), we see that

C?T−1 =
[
CD 0

]
. (16)

Defining Ā , TAT−1, C̄ , C?T−1, and using (14) and
(16), we obtain (11). It remains to show that (9) implies
detectability of the pair (AD,CD). To this end, note that the
unique solutions to (12) and (15) are given by AD = ΣAΣ†

and CD = C?Σ†, respectively. Based on the PBH test, the
pair (AD,CD) is detectable if and only if

rank
[
sI −ΣAΣ†

C?Σ†

]
= r?, ∀s ∈ C, |s| ≥ 1. (17)

Since
[
Σ† I−Σ†Σ

]
is full row-rank, it follows that

rank
[
sΣ −ΣA

C?

]
= rank

[
sΣ −ΣA

C?

] [
Σ† I −Σ†Σ

]
= rank

[
sI −ΣAΣ† 0

C?Σ† 0

]
.

(18)

The last equality follows by noting that the matrix (I−Σ†Σ)
projects onto the null space of Σ, and that R(ΣA), R(C?)
are both contained in R(Σ). Finally, combining (9), (17) and
(18) leads to the desired result.

Remark 3. Note that Lemma 1 does not describe a standard
detectable decomposition of the pair (A,C?). In fact, the
dimension of the square matrix AD, namely r?, is in general
smaller than the dimensions of the detectable subspaces of
the pairs (A,C?), (A,CS?) and (A,C).

Based on (11), we obtain the following dynamics:

φ[k + 1] = ADφ[k], ȳ[k] = CDφ[k], (19)

where φ[k] =
[
Ir? 0

]
Tx[k] = Σx[k], ȳ[k] represents

measurements of the sensor nodes in S? corresponding to
the matrix C?, i.e., ȳ[k] = C?x[k], and AD, CD, Σ =[
LT C̃?

T
]T

are as described by Lemma 1. In particular,
note that the first r states of the vector φ[k] represent
the functions of interest, namely ψ[k]. Effectively, we have

converted the distributed functional estimation problem to the
problem of designing a full-order distributed state observer
for the state φ[k] described by (19). At this stage, any of
the distributed state observer approaches outlined in [5]–
[8] can be employed for estimating φ[k]. In what follows,
we develop a distributed functional observer that guarantees
asymptotic reconstruction of φ[k], and hence ψ[k] at every
sensor node, based on the approach adopted in our recent
work [7], [8]. We do so because the approaches described
in [5], [6] require certain sensor nodes to maintain observers
of order greater than r?, whereas with our method all nodes
maintain observers of order r?.

V. DISTRIBUTED FUNCTIONAL OBSERVER DESIGN

For clarity of exposition, we assume the following.

Assumption 1. The graph G is strongly connected, i.e., for
all i, j ∈ V , there exists a path from i to j and vice versa.

Referring to (19), our distributed functional estimation
strategy can be summarized as: given a node i in S?,
we wish to identify the portion of φ[k] that is locally
detectable at node i. Accordingly, node i will maintain a
Luenberger observer for this locally detectable portion and
rely on consensus dynamics for estimating the rest of φ[k].
Given this strategy for the functional leader nodes, it will
be established that the nodes in V \ S? need to simply run
consensus for different components of φ[k], along spanning
trees rooted at the functional leader set S?. To achieve this
objective, we use the concept of a multi-sensor observable
canonical decomposition (introduced in [7], [8]) to reveal
the portions of φ[k] that can and cannot be observed using
the cumulative measurements of the functional leader set. To
this end, let the sensors in the functional leader set S? be
indexed as S? = {1, 2, · · · ,M}, where M = |S?|. The next
result then readily follows from [8].

Proposition 2. Given the dynamics (19), let CD be parti-
tioned among the individual nodes of the functional leader
set S? as CD =

[
CT

D1
· · · CT

DM

]T
.9 Then, there exists

a similarity transformation matrix TD ∈ Rr?×r? which
transforms the pair (AD,CD) to (ĀD, C̄D), such that

ĀD =



A11 0
A21 A22 0

...
...

. . .
...

...
A(M−1)1 A(M−1)2 · · · A(M−1)(M−1) 0

AM1 AM2 · · · AM(M−1) AMM 0
A1 A2 · · · A(M−1) AM AU


,

C̄D =


C̄D1

C̄D2...
C̄DM

 =


C11 0
C21 C22 0

...
...

...
...

...
CM1 CM2 · · ·CM(M−1) CMM 0

 .

(20)

Furthermore, the following properties hold: (i) the pair
(Aii,Cii) is observable ∀i ∈ {1, 2, · · · ,M}; and (ii) the
matrix AU describes the dynamics of the unobservable
subspace of the pair (AD,CD).

9Accordingly, ȳi[k] = CDi
φ[k], ∀i ∈ S?.



Using the matrix TD in Proposition 2 to perform the
coordinate transformation φ[k] = TDz[k], we obtain

z[k + 1] = ĀDz[k],

ȳi[k] = C̄Di
z[k], ∀i ∈ {1, · · · ,M},

(21)

where ĀD = TD−1ADTD and C̄Di
= CDi

TD =[
Ci1 Ci2 · · · Ci(i−1) Cii 0

]
are given

by (20). The vector z[k] assumes the structure

z[k] =
[
z(1)

T
[k] · · · z(M)T [k] zTU [k]

]T
commensurate

with the structure of ĀD in (20). We refer to z(j)[k] ∈ Roj

as the j-th sub-state, and to zU [k] as the unobservable
sub-state of z[k] since it represents the unobservable
portion of the state with respect to the pair (AD,CD). The
multi-sensor observable canonical decomposition leads to
a one-to-one correspondence between a node j ∈ S? and
its associated sub-state z(j)[k]. Accordingly, node j ∈ S?
is viewed as the source of information of its corresponding
sub-state z(j)[k], and is tasked with the responsibility of
leading the consensus dynamics corresponding to z(j)[k].
Thus, for each of the M sub-states, we have a unique source
of information within the functional leader set S?.

Based on equations (20) and (21), observe that the dynam-
ics of the i-th sub-state are governed by

z(i)[k + 1] = Aiiz
(i)[k] +

i−1∑
j=1

Aijz
(j)[k],

ȳi[k] = Ciiz
(i)[k] +

i−1∑
j=1

Cijz
(j)[k].

(22)

Note that the unobservable sub-state zU [k] evolves as

zU [k + 1] = AUzU [k] +
∑M

j=1 Ajz
(j)[k]. (23)

Define ẑ
(j)
i [k] as the estimate of the j-th sub-state maintained

by the i-th node in V . The i-th functional leader adopts
the following policy: it uses a Luenberger-style update rule
for updating its associated sub-state ẑ

(i)
i [k], and a consensus

based scheme for updating all other sub-states ẑ
(j)
i [k], where

j ∈ {1, · · · ,M} \ {i}. Based on the dynamics (22), the
Luenberger observer at node i ∈ S? is constructed as

ẑ
(i)
i [k + 1] = Aiiẑ

(i)
i [k] +

i−1∑
j=1

Aij ẑ
(j)
i [k]

+ Gi(ȳi[k]− (Ciiẑ
(i)
i [k] +

i−1∑
j=1

Cij ẑ
(j)
i [k])),

(24)

where Gi ∈ Roi×ti is a gain matrix which needs to be
designed, and oi and ti are the lengths of z(i)[k] and ȳi[k],
respectively. For estimation of the j-th sub-state, where j ∈
{1, · · · ,M}\{i}, the i-th node in S? employs the following
consensus dynamics

ẑ
(j)
i [k + 1] = Ajj

∑
l∈Ni

wj
ilẑ

(j)
l [k]︸ ︷︷ ︸

consensus term

+

j−1∑
l=1

Ajlẑ
(l)
i [k]︸ ︷︷ ︸

coupling term

, (25)

where wj
il is the weight the i-th node associates with the

l-th node (where l ∈ Ni) for the estimation of the j-
th sub-state. Each node in V \ S? runs a consensus rule

identical to (25), but for every sub-state j ∈ {1, · · · ,M}. The
consensus weights are non-negative and satisfy

∑
l∈Ni

wj
il =

1, ∀j ∈ {1, · · · ,M}. Let ẑiU [k] denote the estimate of the
unobservable sub-state zU [k] maintained by the i-th node in
V . Mimicking (23), each node i ∈ V updates ẑiU [k] as

ẑiU [k + 1] = AU ẑiU [k] +
∑M

j=1 Aj ẑ
(j)
i [k]. (26)

Summarily, the update equations (24), (25) and (26) con-
stitute the proposed distributed functional observer. It is
important to note that each of the M functional leader nodes
in S? maintain a Luenberger observer for estimating their
corresponding sub-state and use consensus for the remaining
M−1 sub-states of the vector z[k], whereas each non-leader
node in V \S? runs consensus for every sub-state. All nodes
run (26) since there is no leader corresponding to zU [k].

VI. MAIN RESULT

To analyze the distributed functional estimation strategy
developed in the previous section, we require the following
Lemma; since the proof of this result essentially follows the
same steps as [7, Theorem 1], we skip minor details and
present a sketch of the main idea.

Lemma 2. In the dynamics (19), suppose the pair (AD,CD)
is detectable and that the communication graph G is strongly
connected. Then, for each node i ∈ S? = {1, 2, · · · ,M},
there exists a choice of observer gain matrix Gi, and
consensus weights wj

il, j ∈ {1, 2, · · · ,M}\{i}, l ∈ Ni, and
for each node i ∈ V \ S?, there exists a choice of consensus
weights wj

il, j ∈ {1, 2, · · · ,M}, l ∈ Ni, such that the
update equations (24), (25) and (26) guarantee asymptotic
reconstruction of φ[k] at each node in V .

Proof. (Sketch) Define e
(j)
i [k] , ẑ

(j)
i [k]−z(j)[k] as the esti-

mation error of the j-th sub-state of z[k] at the i-th node. Let
the index set {1, k1, k2, · · · , kN−1} represent a topological
ordering consistent with a spanning tree rooted at node 1
(the source of information/leader for sub-state 1); such a
tree always exists since G is strongly connected. Consider
the composite error vector (permuted to match the aforemen-
tioned topological ordering) for the estimation of sub-state

1: Ē(1)[k] =
[
e
(1)
1 [k]

T
e
(1)
k1

[k]
T
· · · e

(1)
kN−1

[k]
T
]T

=[
e
(1)
1 [k]

T
Ẽ(1)[k]

T
]
. Based on (22), (24) and (25), we

obtain the following error dynamics[
e
(1)
1 [k + 1]

Ẽ(1)[k + 1]

]
=

[
(A11 −G1C11) 0

W1
21 ⊗A11 W1

22 ⊗A11

]
︸ ︷︷ ︸

M1

[
e
(1)
1 [k]

Ẽ(1)[k]

]
, (27)

where the matrix W1 =
[
W1

21 W1
22

]
contains consensus

weights defined by (25). Notice that sp(M1) = sp(A11 −
G1C11) ∪ sp(W1

22 ⊗ A11). Since the pair (A11,C11) is
observable by construction, one can always find a G1 that
stabilizes (A11 −G1C11). Next, we impose the constraint
that for the estimation of sub-state 1, non-zero consensus
weights are assigned to only the branches of the spanning
tree that is rooted at node 1 and is consistent with the order-
ing {1, k1, k2, · · · , kN−1}, i.e., a node listens to only its par-
ent in such a tree. In this way, W1

22 becomes lower triangular



with eigenvalues equal to zero. Designing the consensus
weights in such a way ensures that W1

22 ⊗A11, and hence
M1, are both Schur stable, implying limk→∞ Ē(1)[k] = 0;
i.e., all nodes in V can asymptotically estimate sub-state 1.

Generalizing the previous analysis, for the estimation of
sub-state j ∈ {1, · · · ,M}, we impose that a node in V
assigns a non-zero consensus weight to only its parent in
the spanning tree rooted at node j ∈ S? (node j acts
as the source of information for sub-state j). Inducting on
the sub-state number j and using Input to State Stability
(ISS) then ensures that every node in V can asymptotically
estimate each of the M sub-states of z[k]. Finally, note that
detectability of the pair (AD,CD) implies that the matrix
AU featuring in equations (23) and (26) is Schur stable.
Based on this fact and our previous analysis, it is easy to
see that each node in V can asymptotically estimate zU [k],
and hence z[k] and φ[k] where φ[k] = TDz[k].

The following is the main result of the paper.

Theorem 1. Given a tuple (A,C,L) described by equations
(1), (2), and (3), and a strongly connected communication
graph G, let the feasible leader set F described by Definition
1 be non-empty. Then, the proposed distributed functional
observer described by the update equations (24), (25), and
(26) solves Problem 1.

Proof. Since F is non-empty, there exists a functional leader
set S?. Based on the property of S? described by Lemma 1,
the pair (AD,CD) governing the dynamics of φ[k] (see (19))
is detectable. Since G is strongly connected, it then follows
from Lemma 2 that each node in V can asymptotically
estimate φ[k]. Noting that the desired functions ψ[k] satisfy
ψ[k] =

[
Ir 0

]
φ[k] completes the proof.

Remark 4. Note that the order of the proposed distributed
functional observer is r? where r ≤ r? ≤ d in general, with
r = rank L and d equal to the dimension of the detectable
subspace of the pair (A,C) given by (1) and (2). The fact
that r? ≥ r follows from the discussion in Section III. For the
special case when R(C?) ⊆ R(L), we have r? = r. Further,
when the tuple (A,C,L) is ‘functionally observable’ [12],
i.e., when the functions of interest are linear combinations
of only the observable states of (A,C), it is easily seen that
the order of the proposed observer is no greater than the
dimension of the observable subspace of (A,C).

Remark 5. Note that when L = In, the rank condition (8)
is trivially satisfied whereas (9) boils down to the existence
of a set of nodes S ∈ V such that the pair (A,CS) is
detectable. For a strongly connected graph G, it was shown
in [5]–[8] that the necessary and sufficient condition for
distributed state estimation is the detectability of the pair
(A,C). Thus, it is apparent that for a strongly connected
graph G, the sufficient condition presented in this paper for
the construction of a distributed functional observer, namely
that the feasible leader set F is non-empty, is in fact a
generalization of the aforementioned necessary and sufficient
condition for distributed state estimation.

VII. CONCLUSION

We studied the problem of designing distributed functional
observers for LTI systems. Our work was motivated by
the observation that existing results/techniques for designing
centralized functional observers are not directly applicable
in a distributed setting. To solve the problem considered in
this paper, we introduced the notion of ‘functional leader
nodes’ and showed that such nodes play a key role in our
proposed functional estimation strategy. We established that
under certain conditions on the system dynamics and network
structure, our method guarantees asymptotic reconstruction
of the functions of interest at every sensor node.

By effectively transforming the distributed functional esti-
mation problem into a distributed state estimation problem,
the technique developed in this paper presents various oppor-
tunities for extensions. For example, to counter the effect of
malicious/faulty nodes, one can apply the secure distributed
state estimation algorithm from our recent work [15].

As future work, it would be interesting to consider a
setting where different clusters of nodes are interested in
estimating different sets of functions.
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