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Abstract— We investigate the problem of distributed state
estimation of a linear time-invariant (LTI) system by a network
of sensors. We propose a new approach to designing distributed
observers based on the following intuition: a given node (sensor)
can reconstruct a certain portion of the state solely by using its
own measurements together with an appropriate Luenberger
observer. Hence it only needs to rely on information obtained
from neighbors for estimating the portion of the state that is
not locally detectable. We build on this intuition in this paper
by extending the idea of the Kalman observable canonical
decomposition to a setting with multiple sensors. We then
construct local Luenberger observers at each node based on
this decomposition, and use consensus dynamics to estimate the
unobservable portions of the state at each node. This leads to an
estimation scheme that achieves asymptotic state reconstruction
at each node of the network for the most general class of LTI
systems, sensor network topologies and sensor measurement
structures.

I. INTRODUCTION

We consider a setting where the state of a linear dynamical
system is monitored by a network of sensor nodes. The ob-
jective of each node is to asymptotically estimate the state of
the dynamical system using its own (limited) measurements
and via information exchange with neighbors. This is known
as the distributed state estimation problem.

Different versions of this problem have been explored
under varying assumptions on the system observability and
network topology. For instance, [1]–[3] consider scalar
stochastic dynamical systems over general graphs subject to
local observability at each node, whereas [4], [5] investigate
the distributed estimation problem for complete graphs. For
more general stochastic systems, a Kalman filtering based
approach was proposed in [6], [7], which relies on a two-
step strategy - a Kalman filter based state estimate update
rule, and a data fusion step based on average-consensus. The
stability and performance issues of this method have been
investigated in [8], [9]. A drawback of this method (and the
ones in [2], [10], [11]), stems from the fact that they require
a (theoretically) infinite number of data fusion iterations
between two consecutive time steps of the plant dynamics
in order to reach average consensus. More recently, finite-
time data fusion relying on a two-time-scale strategy has
been studied in [12] and [13], and an LMI-based approach
has been employed in [14].

In [15] and [16], the authors propose a single-time-scale
scalar-gain estimator for distributed observer design over
undirected graphs. However, the tight coupling between the
network topology and the plant dynamics typically limits the
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set of unstable eigenvalues that can be accommodated by
their method without violating the constraints imposed upon
the range of the scalar gain parameter. In [17], the author
approaches the observer design problem from a geometric
perspective and provides separate necessary and sufficient
conditions for consensus-based distributed observer design.
In [18]–[20], the authors use single-time-scale algorithms,
and work under the broadest assumptions, namely that the
pair (A,C) is detectable, where A represents the system
matrix, and C is the collection of all the node observation
matrices. In all of these works, the authors rely on state aug-
mentation for casting the distributed estimation problem as
a problem of designing a decentralized stabilizing controller
for an LTI plant, using the notion of fixed modes [21].

In this paper, we develop a new approach to designing
distributed observers for LTI dynamical systems based on
the following simple, yet key observation - for each node,
there may be certain portions of the state that the node can
reconstruct using only its local measurements. The node thus
does so. For the remaining portion of the state space, the
node relies on a consensus-based update rule. The key is
that those nodes that can reconstruct certain states on their
own act as “source nodes” (or “leaders”) in the consensus
dynamics, leading the rest of the nodes to asymptotically
estimate those states as well. These ideas, in a nutshell,
constitute the essence of our distributed estimation strategy.
We consider the most general category of systems and graphs
(taken together) for which the distributed estimation problem
can be solved, and develop an estimation scheme with
the following appealing features: i) it provides theoretical
guarantees regarding the design of asymptotically stable
estimators; (ii) it results in a single-time-scale algorithm; (iii)
it does not require any state augmentation; (iv) it requires
only state estimates to be exchanged locally; and (v) it works
under the broadest conditions on the system and network
topology.

II. SYSTEM MODEL

A. Notation

A directed graph is denoted by G = (V, E), where
V = {1, · · · , N} is the set of nodes and E ⊆ V × V
represents the edges. An edge from node j to node i, denoted
by (j, i), implies that node j can transmit information to
node i. The neighborhood of the i-th node is defined as
Ni , {i} ∪ {j | (j, i) ∈ E}. The set of all eigenvalues of
a matrix A is denoted by sp(A). For a set {A1, · · · ,An}
of matrices, we use diag(A1, · · · ,An) to denote a block
diagonal matrix with the Ai’s along the diagonal. For a
set S = {s1, · · · , sp} ⊆ {1, · · · , N}, and a matrix C =



[
CT

1 · · · CT
N

]T
, we define CS ,

[
CT

s1 · · · CT
sp

]T
.

We use the star notation to avoid writing matrices that are
either unimportant or that can be inferred from context. We
use Ir to indicate an identity matrix of dimension r × r.
Throughout the rest of this paper, we use the terms ‘nodes’
and ‘observers’ interchangeably.

B. Problem Formulation

Consider the discrete-time linear dynamical system1

x[k + 1] = Ax[k], (1)

where k ∈ N is the discrete-time index, x[k] ∈ Rn is the state
vector and A ∈ Rn×n is the system matrix. The system is
monitored by a network G = (V, E) consisting of N nodes.
The i-th node has a measurement of the state, given by

yi[k] = Cix[k], (2)

where yi[k] ∈ Rri and Ci ∈ Rri×n. We denote y[k] =[
yT
1 [k] · · · yT

N [k]
]T

, and C =
[
CT

1 · · · CT
N

]T
.

The task of each node i ∈ {1, · · · , N} is to estimate
the entire system state x[k]. However, if the pair (A,Ci)
is not detectable, then node i cannot estimate the true state
of the plant solely based on its own local measurements,
thereby necessitating information exchange with neighbors.
Let x̂i[k] denote the state estimate of node i. We refer to the
network of nodes maintaining and updating their estimates
as a distributed observer. We shall borrow the following
definitions from [20] for our analysis.

Definition 1 (Omniscience): A distributed observer is said
to achieve omniscience if limk→∞ ||x̂i[k]− x[k]|| = 0,∀i ∈
{1, · · · , N}, i.e., the state estimate maintained by each node
asymptotically converges to the true state of the plant.

Definition 2 (Source Component): Given a directed graph
G = (V, E), a source component (Vs, Es) is defined as a
strongly connected component of G such that there are no
edges from V \ Vs to Vs.

Let there be p source components of G, denoted by
{(Vi, Ei)}i∈{1,··· ,p}. The subsystem associated with the i-
th source component is given by the pair (A,CVi). For the
subsequent development, it should be noted that by a system
(A,C), we refer to a pair (A,C) satisfying equations (1)
and (2).

III. DESCRIPTION OF THE ESTIMATION SCHEME

In this section, we propose a distributed observer for
achieving omniscience. For presenting the key ideas while
reducing notational complexity, we shall make the following
assumption.2

1We omit noise terms in the dynamics for ease of exposition (e.g., as in
[17]–[20]). However, it can be shown that the methods developed in this
paper lead to bounded mean square estimation error in the presence of i.i.d.
noise with bounded second moments. Further, it should be noted that our
proposed techniques will be equally applicable to continuous-time systems,
with straightforward modifications.

2We shall later argue that the development can be easily extended to
arbitrary graph topologies.

Assumption 1: The graph G is strongly connected, i.e.,
there exists a directed path from any node i to any other
node j, where i, j ∈ V .

We begin our development of the proposed estimation
scheme by providing a generalization of the Kalman observ-
able canonical form to a setting with multiple sensors.

A. Multi-Sensor Observable Canonical Decomposition

Given a system matrix A and a set of N sensors, such that
the i-th sensor has an observation matrix given by Ci, we
introduce the notion of a multi-sensor observable canonical
decomposition in this section. The basic philosophy underly-
ing such a decomposition is as follows: given a list of indexed
sensors, perform an observable canonical decomposition with
respect to the first sensor. Then, identify the observable
portion of the state space with respect to sensor 2 within the
unobservable subspace of sensor 1, and repeat the process
until the last sensor is reached. Thus, one needs to perform
N observable canonical decompositions, one for each sensor,
with the last decomposition revealing the portions of the state
space that can and cannot be observed using the cumulative
measurements of all the sensors. In this context, consider the
following result.

Proposition 1: Given a system matrix A, and a set of N
sensor observation matrices C1,C2, · · · ,CN , define C ,[
CT

1 · · · CT
N

]T
. Then, there exists a similarity trans-

formation matrix T which transforms the pair (A,C) to
(Ā, C̄), such that

Ā =



A1O 0

?

A2O 0

?

. . .
...

...
A(N−1)O 0

?
ANO 0
? AUO


,

C̄ =


C̄1

C̄2
...

C̄N

 =


C1O 0
C21O C2O 0

...
...

...
...

...
CN1O CN2O · · ·CN(N−1)O CNO 0

 .

(3)
Furthermore, the following properties hold: (i) the pair
(AiO,CiO) is observable ∀i ∈ {1, 2, · · · , N}; and (ii) the
matrix AUO describes the dynamics of the unobservable
subspace of the pair (A,C).

We provide a proof of the above result (which details the
steps associated with the multi-sensor observable canonical
decomposition) in [22]. In the following section, we discuss
how the multi-sensor observable canonical decomposition is
applicable to the problem of achieving omniscience.

B. Observer Design

Using the matrix T identified in Proposition 1, we perform
the coordinate transformation x[k] = T z[k] to obtain

z[k + 1] = Āz[k]

yi[k] = C̄iz[k], ∀i ∈ {1, · · · , N}, (4)



where Ā = T −1AT and C̄i = CiT =[
Ci1O Ci2O · · · Ci(i−1)O CiO 0

]
are given

by (3). The vector z[k] assumes the following structure
(commensurate with the structure of Ā in (3)):

z[k] =


z
(1)
O [k]

...
z
(N)
O [k]
zUO[k]

 . (5)

Here, zUO[k] is precisely the unobservable portion of the
state z[k], with respect to the pair (A,C). We call z

(j)
O [k]

the j-th sub-state, and zUO[k] the unobservable sub-state.
Notice that based on the multi-sensor observable canonical
decomposition, there is a one-to-one correspondence between
a node j and its associated sub-state z

(j)
O [k]. Accordingly,

node j will be viewed as the source of information of
its corresponding sub-state z

(j)
O [k], and is tasked with the

responsibility of estimating this sub-state. For each of the
N sub-states, we thus have a unique source of information
(based on the initial labeling of the nodes). However, there
is no unique source of information for the unobservable sub-
state zUO[k], as this portion of the state does not correspond
to the observable subspace of any of the nodes in the
network. Each node will thus maintain an estimate of zUO[k],
which it updates as a linear function of its own estimates of
each of the N sub-states z

(j)
O [k],∀j ∈ {1, 2, · · · , N}.

Remark 1: It should be noted that a given sub-state z
(j)
O [k]

in equation (5) might be of zero dimension (i.e., the sub-
state can be empty). For instance, this can happen if its
corresponding source of information, namely node j, has no
measurements, i.e., if Cj = 0.

Define ẑ
(j)
iO [k] as the estimate of the j-th sub-state main-

tained by the i-th node. First, based on equations (3), (4) and
(5), we observe that the dynamics of the i-th sub-state are
governed by the equations

z
(i)
O [k + 1] = AiOz

(i)
O [k] +

i−1∑
j=1

Aijz
(j)
O [k],

yi[k] = CiOz
(i)
O [k] +

i−1∑
j=1

CijOz
(j)
O [k],

(6)

where Aij are matrices represented by ?’s in (3). The
reader is referred to the proof of Proposition 1 in [22] for
a mathematical description of these matrices. Also, note
that the unobservable sub-state zUO[k] is governed by the
dynamics

zUO[k + 1] = AUOzUO[k] +

N∑
j=1

Ajz
(j)
O [k], (7)

where the matrices Aj (represented by ?’s in equation (3))
describe the coupling that exists between the unobservable
sub-state zUO[k] and each of the N sub-states z

(j)
O [k]. The

estimation policy adopted by the i-th node is as follows -
it uses a Luenberger-style update rule for updating its asso-
ciated sub-state ẑ

(i)
iO[k], and a consensus based scheme for

updating all other sub-states ẑ(j)iO [k], where j ∈ {1, · · · , N}\
{i}. Based on the dynamics (6), the Luenberger observer at
node i is constructed as

ẑ
(i)
iO[k + 1] = AiOẑ

(i)
iO[k] +

i−1∑
j=1

Aij ẑ
(j)
iO [k]

+ Li(yi[k]− (CiOẑ
(i)
iO[k] +

i−1∑
j=1

CijOẑ
(j)
iO [k])),

(8)

where Li ∈ Roi×ri is a gain matrix which needs to be
designed (recall z(i)O ∈ Roi ). For estimation of the j-th sub-
state, where j ∈ {1, · · · , N}\{i}, the i-th node again mimics
the first equation in (6), but this time relies on consensus
dynamics of the form

ẑ
(j)
iO [k + 1] = AjO

∑
l∈Ni

wj
ilẑ

(j)
lO [k]︸ ︷︷ ︸

consensus term

+

j−1∑
l=1

Ajlẑ
(l)
iO[k]︸ ︷︷ ︸

coupling term

, (9)

where wj
il is the weight the i-th node associates with the l-th

node, for the estimation of the j-th sub-state. The weights
are non-negative and satisfy∑

l∈Ni

wj
il = 1, ∀j ∈ {1, · · · , N} \ {i}. (10)

In equation (9), the first term is a standard consensus term,
while the second term has been introduced specifically to
account for the coupling that exists between a given sub-
state j, and sub-states 1 to j − 1 (as given by (6)). Let
ẑiUO[k] denote the estimate of the unobservable sub-state
zUO[k] maintained by the i-th node. Mimicking equation
(7), each node i uses the following rule to update ẑiUO[k]:

ẑiUO[k + 1] = AUOẑiUO[k] +

N∑
j=1

Aj ẑ
(j)
iO [k]. (11)

In summary, equations (8), (9) and (11) together form the
observer for the state z[k] = T −1x[k] maintained by each
node i.

C. Error Dynamics at the i-th Node

Define e
(j)
iO [k] , ẑ

(j)
iO [k]−z(j)O [k] as the error in estimation

of the j-th sub-state by the i-th node. Using equations (6) and
(8), we obtain the error in the Luenberger observer dynamics
at the i-th node as

e
(i)
iO[k + 1] = (AiO − LiCiO)e

(i)
iO[k] +

∑i−1
j=1(Aij − LiCijO)e

(j)
iO [k].

(12)
Similarly, noting that AjO = AjO

∑
l∈Ni

wj
il (based on

equation (10)), and using equations (6) and (9), we obtain
the following consensus error dynamics at node i, ∀j ∈
{1, · · · , N} \ {i}:

e
(j)
iO [k + 1] = AjO

∑
l∈Ni

wj
ile

(j)
lO [k] +

j−1∑
l=1

Ajle
(l)
iO[k]. (13)



Define eiUO[k] , ẑiUO[k]−zUO[k] as the error in estimation
of the unobservable sub-state zUO[k] by the i-th node. Using
(7) and (11), we obtain the following error dynamics for the
unobservable sub-state at node i:

eiUO[k + 1] = AUOeiUO[k] +

N∑
j=1

Aje
(j)
iO [k]. (14)

IV. ANALYSIS OF THE ESTIMATION SCHEME

We now state and prove our main result which provides
necessary and sufficient conditions for our proposed observer
to achieve omniscience.

Theorem 1: Consider a system (A,C), and a graph
G satisfying Assumption 1. Then, for each node i ∈
{1, 2, · · · , N}, there exists a choice of observer gain matrix
Li, and consensus weights wj

il, j ∈ {1, 2, · · · , N} \ {i},
l ∈ Ni, such that the distributed observer given by equations
(8), (9), and (11) achieves omniscience if and only if the pair
(A,C) is detectable.

Proof: “⇐=” Consider the composite error in estima-
tion of sub-state j by all of the nodes in V , defined as

E
(j)
O [k] ,


e
(j)
1O[k]

e
(j)
2O[k]

...
e
(j)
NO[k]

 . (15)

We will prove that E(j)
O [k] converges to zero asymptotically

∀j ∈ {1, · · · , N} (recall that there are precisely N nodes
in the network, each responsible for estimating a certain
sub-state). We prove by induction on j. Consider the base
case j = 1, i.e., the estimation of the first sub-state. Let
the index set {1, k1, k2, · · · , kN−1} represent a topological
ordering3 consistent with a spanning tree rooted at node 1
(the source of information for sub-state 1). Note that based on
Assumption 1, it is always possible to find such a spanning
tree. Next, consider the composite error vector

Ē
(1)
O [k] =


e
(1)
1O[k]

e
(1)
k1O[k]

...
e
(1)
kN−1O[k]

 =

 e
(1)
1O[k]

Ẽ
(1)
O [k]

 , (16)

where Ẽ
(1)
O [k] ,

[
e
(1)
k1O[k]

T
· · · e(1)kN−1O[k]

T
]T

. Note that

Ē
(1)
O [k] is simply a permutation of the rows of E(1)

O [k]. Based
on the error dynamics equations given by (12) and (13), we
obtain

3Such an ordering results when a standard Breadth-First Search (BFS)
[23] algorithm is applied to the graph G, with node 1 as the root node of
the tree. Specifically, the order represents the order in which the nodes are
added to the spanning tree when the BFS algorithm is implemented, i.e.,
node k1 would be added first, followed by node k2 and so on. This ordering
naturally leads to a lower triangular adjacency matrix for the constructed
spanning tree.

 e
(1)
1O[k + 1]

Ẽ
(1)
O [k + 1]

 =

[
(A1O − L1C1O) 0
W1

21 ⊗A1O W1
22 ⊗A1O

]
︸ ︷︷ ︸

M1

 e
(1)
1O[k]

Ẽ
(1)
O [k]

 ,

where the entries of the weight matrix W1 =
[
W1

21 W1
22

]
are populated by the appropriate weights defined by equation
(13) (note that W1 ∈ R(N−1)×N and W1

21 is the first
column of W1). Notice that sp(M1) = sp(A1O−L1C1O)∪
sp(W1

22 ⊗A1O). By construction, the pair (A1O,C1O) is
observable. Thus, it is always possible to find a gain matrix
L1 such that (A1O − L1C1O) is Schur stable. Next, we
impose the constraint that for the estimation of sub-state
1, non-zero consensus weights are assigned to only the
branches of the spanning tree consistent with the ordering
{1, k1, k2, · · · , kN−1}, i.e., a node listens to only its parent in
such a tree. In this way, W1

22 becomes lower triangular with
eigenvalues equal to zero, without violating the stochasticity
condition imposed on W1 by equation (10). We conclude
that by an appropriate choice of consensus weights, we can
achieve ΛU (W1

22 ⊗A1O) = ∅ (even if ΛU (A1O) 6= ∅).4

Thus, M1 can be made Schur stable and hence
limk→∞ Ē

(1)
O [k] = 0, implying limk→∞E

(1)
O [k] = 0 (one

is just a permutation of the other). Thus, the base case
is proven. Next, suppose that E

(j)
O [k] converges to zero

asymptotically ∀j ∈ {1, · · · , p − 1}, where 1 ≤ p − 1 ≤
N − 1. Consider the following composite error vector for
the p-th sub-state:

Ē
(p)
O [k] =


e
(p)
pO[k]

e
(p)
m1O[k]

...
e
(p)
mN−1O[k]

 =

 e
(p)
pO[k]

Ẽ
(p)
O [k]

 , (17)

where the index set {p,m1,m2, · · · ,mN−1} represents a
topological ordering of the nodes of V to obtain a spanning
tree rooted at node p (the source of information for sub-state

p), and Ẽ
(p)
O [k] ,

[
e
(p)
m1O[k]

T
· · · e(p)mN−1O[k]

T
]T

. From the
error dynamics equations given by (12) and (13), we obtain

Ē
(p)
O [k + 1] = MpĒ

(p)
O [k] +

p−1∑
l=1

HplĒ
(pl)
O [k], (18)

where

Mp =

[
(ApO − LpCpO) 0
Wp

21 ⊗ApO Wp
22 ⊗ApO

]
, (19)

Hpl = diag (Apl − LpCplO, IN−1 ⊗Apl) , (20)

Ē
(pl)
O [k] =


e
(l)
pO[k]

e
(l)
m1O[k]

...
e
(l)
mN−1O[k]

 . (21)

4Here, we use the result that if A ∈ Rn×n and B ∈ Rm×m, then the
eigenvalues of the Kronecker product A ⊗ B ∈ Rmn×mn are the mn
numbers λi(A)λj(B), (i = 1, · · · , n; j = 1, · · · ,m) [24].



By following the same train of logic as the base case, one
concludes that Mp can be made Schur stable by appropriate
choices of the observer gain matrix Lp, and consensus weight
matrix Wp =

[
Wp

21 Wp
22

]
(note that Wp ∈ R(N−1)×N

and Wp
21 is the first column of Wp). Specifically, non-zero

weights are assigned in Wp only on the branches of the tree
rooted at node p, consistent with the topological ordering.
Notice that Ē(pl)

O [k] is simply a permutation of the rows of
E

(l)
O [k] (permuted to match the order of indices in Ē

(p)
O [k]).

Further, based on our induction hypothesis, E(l)
O [k] converges

to zero asymptotically (since 1 ≤ l ≤ p − 1). Thus, by
Input to State Stability (ISS), we conclude that Ē(p)

O [k], and
hence E

(p)
O [k], converges to zero asymptotically. We have

thus proven that the composite estimation error for every sub-
state asymptotically approaches zero, i.e., limk→∞ e

(j)
iO [k] =

0,∀i, j ∈ {1, · · ·N}.
Finally, consider the error in estimation of the unobserv-

able sub-state zUO[k] (given by equation (14)). As the pair
(A,C) is detectable, it follows from Proposition 1 that the
matrix AUO in (14) is stable. Invoking ISS, we have that
limk→∞ eiUO[k] = 0,∀i ∈ {1, · · · , N}. We conclude that
every node in the network can asymptotically estimate z[k],
and hence x[k], as x[k] = T z[k].

“=⇒” The proof of necessity follows from standard de-
tectability arguments. Specifically, if the pair (A,C) is not
detectable, then there exists some initial system state that
causes the system outputs of all the nodes in the graph to be
zero for all time, without the state decaying to zero. Thus, no
node in V can ever distinguish this case from the one where
the initial state is identically zero. Thus, omniscience cannot
be achieved. It is easy to see that the detectability of the pair
(A,C) for strongly connected graphs is in fact necessary for
any estimation scheme to achieve omniscience.5

A. Summary of the Estimation Scheme

Our proposed distributed observer scheme for strongly
connected graphs can be broadly decomposed into two
main phases, namely, the design phase, and the distributed
estimation phase, summarized as follows.

Design Phase:
• The multi-sensor observable canonical decomposition is

performed, yielding the state z[k] = T −1x[k].
• Based on this transformation, each node is associated

with a sub-state of z[k] that it is responsible for es-
timating. Recall that there are precisely N sub-states,
one corresponding to each node in the network; some
of these sub-states might be empty.

• For the estimation of a given sub-state, we construct a
spanning tree rooted at the specific node which acts
as the source of information for that sub-state. The
resulting spanning tree guides the construction of the
consensus weight matrix to be used for the estimation
of that particular sub-state. We construct one spanning
tree for the estimation of each non-empty sub-state.

5A more general version of this result for arbitrary graph topologies will
be presented in a later section.

Estimation Phase (Run-time):
• Each node employs a Luenberger observer for con-

structing an estimate of its corresponding sub-state, and
runs consensus dynamics for estimating the sub-states
corresponding to the remaining nodes in the network.
These dynamics are given by equations (8), (9) and (11).

Remark 2: While the observer design procedure we have
outlined (involving the multi-sensor decomposition, design
of local observer gains, construction of spanning trees and
selection of consensus weights) can be readily implemented
in a centralized manner, it may also be possible to perform
these steps in a distributed fashion. This would require the
nodes to assign themselves unique identifiers (or labels)
and execute the multi-sensor decomposition in a round-robin
fashion, followed by a distributed construction of spanning
trees.

B. A Compact Representation of the Proposed Observer

In this section, we combine the update equations (8), (9)
and (11) to obtain a compact representation of our distributed
observer. To do so, we need to first introduce some notation.
Accordingly, let Bj =

[
0 · · · Ioj · · ·0

]
be the matrix which

extracts the j-th sub-state from the transformed state vector
z[k], i.e., z(j)O [k] = Bjz[k]. Similarly, let BUO be such that
zUO[k] = BUOz[k]. Define B , diag(B1, · · · ,BN ,BUO).
Next, notice that the transformed system matrix Ā in
equation (3) can be written as Ā = Ā1 + Ā2, where
Ā2 = diag(A1O, · · · ,ANO,AUO), and Ā1 is a block
lower-triangular matrix given by Ā − Ā2. Let wil (where
l ∈ Ni \{i}) be the vector of weights node i associates with
a neighbor l for the estimation of the transformed state z[k].
Based on our estimation scheme, note that at any given time-
step k, node i does not use the estimates received from its
neighbors at time-step k for estimating z

(i)
O [k] and zUO[k],

and hence these weight vectors assume the following form:
wil =

[
w1

il, · · · , w
i−1
il , 0, wi+1

il , · · · , wN
il , 0

]T
,∀l ∈ Ni \ {i}.

Also, notice that the element wj
il is not present in the vector

if the j-th sub-state is empty (i.e., of dimension 0). Similarly,
let wii be a vector with a ‘1’ in the elements corresponding
to the i-th sub-state and the unobservable sub-state zUO[k],
and zeroes at all other positions. Finally, defining Hi ,[
0T · · ·Li

T · · ·0T
]T

, using equations (8), (9) and (11), and
noting that z[k] = T −1x[k], we obtain the following overall
state estimate update rule at node i:

x̂i[k + 1] = T Ā1T −1x̂i[k] + T Hi(yi[k]− Cix̂i[k])︸ ︷︷ ︸
innovation term

+
∑
l∈Ni

Gilx̂l[k],︸ ︷︷ ︸
“consensus term”

(22)
where x̂i[k] denotes the estimate of the state x[k] maintained
by node i, and

Ci = (CiOBi +
∑i−1

j=1 CijOBj)T −1,Gil = T Ā2B
(
wil ⊗ T −1

)
.

(23)
Remark 3: From the structure of our overall estimator at

node i (equation (22)), it is easy to see that the estimator
maintained at each node has dimension equal to n (i.e., equal



to that of the state). Thus, our approach alleviates the need
to construct augmented observers, as in [20].

In the following section, we discuss how our estimation
scheme for strongly connected graphs can be extended to
arbitrary directed network topologies.

C. Extension to General Network Topologies

Our distributed observer design can be extended to general
directed networks by first decomposing G into its strong
components, and identifying each of the source components.
Next, within a given source component, one simply follows
the observer design procedure outlined in Section IV-A for
a strongly connected graph, to obtain an estimator of the
form (22) for each node within the source component. Define
S ,

⋃p
i=1 Vi to be the set of all nodes that belong to the

source components of G. Let each node in i ∈ V \S employ
a pure consensus strategy of the form

x̂i[k + 1] = A
∑
j∈Ni

wijx̂j [k], (24)

where x̂i[k] represents an estimate of the state maintained by
the i-th node. The weights wij are non-negative and satisfy∑

j∈Ni

wij = 1, ∀i ∈ V \ S. (25)

The design of consensus weights for nodes in V \S is based
on the observation that the set V \ S can be spanned by a
disjoint union of trees rooted in S. By assigning consensus
weights to only the branches of these trees (without violating
the stochasticity condition imposed by equation (25)), one
obtains stable estimation error dynamics for each node in
V \ S (the details are similar to the proof of Theorem 1).

Given the above strategy, the following result immediately
holds.

Theorem 2: Consider a system (A,C) and a graph G.
Let each node in S run an observer of the form (22), and
each node in V \ S run the consensus dynamics given by
(24). Then, there exists a choice of consensus weights and
observer gain matrices such that the proposed distributed
observer achieves omniscience if and only if the sub-system
associated with every source component is detectable, i.e.,
the pair (A,CVi) is detectable ∀i ∈ {1, · · · , p}.

Remark 4: As in the proof of necessity of Theorem 1, it
can be argued that the detectability of subsystems associated
with each source component of a given directed network
is in fact necessary for any estimation scheme to achieve
omniscience.

V. CONCLUSION

In this paper, we proposed a novel method for construct-
ing distributed observers for linear dynamical systems. Our
approach led to a class of observers that not only achieve
asymptotic state reconstruction for the most general class of
system dynamics and network topologies, but also enjoy a
variety of appealing features. Extensions of our approach to
cases with faulty or adversarial nodes would be of interest;
an initial exploration along these lines is provided in [25].
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